DRAM
Dynamic Random Access Memory (DRAM)

• Storage
 • Charge on a capacitor
 • Decays over time (us-scale)
 • This is the “dynamic” part.
 • About $6F^2$: 20x better than SRAM

• Reading
 • Precharge
 • Assert word line
 • Sense output
 • Refresh data

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About $6F^2$: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

![Diagram of DRAM memory cells](image-url)

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About $6F^2$: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About $6F^2$: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

Storage
- Charge on a capacitor
- Decays over time (us-scale)
- This is the “dynamic” part.
- About $6F^2$: 20x better than SRAM

Reading
- Precharge
- Assert word line
- Sense output
- Refresh data

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About $6F^2$: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

The bit cells attached to Wordline 1 are not shown.
Dynamic Random Access Memory (DRAM)

- **Storage**
 - Charge on a capacitor
 - Decays over time (us-scale)
 - This is the “dynamic” part.
 - About 6F^2: 20x better than SRAM

- **Reading**
 - Precharge
 - Assert word line
 - Sense output
 - Refresh data

Only one bit line is read at a time. The other bit line serves as a reference. The bit cells attached to Wordline 1 are not shown.
DRAM: Write and Refresh

- **Writing**
 - Turn on the wordline
 - Override the sense amp.

- **Refresh**
 - Every few micro-seconds, read and re-write every bit.
 - Consumes power
 - Takes time

[Diagram of DRAM cell with wordlines and bitlines]
DRAM Lithography
Accessing DRAM

• Apply the row address
 • “opens a page”
 • Slow (~12ns read + 24 ns precharge)
• Contents in a “row buffer”
• Apply one or more column addr
 • fast (~3ns)
• Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
- Slow (~12ns read + 24 ns precharge)
- Contents in a “row buffer”
- Apply one or more column addrs
 - fast (~3ns)
- Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
- Contents in a “row buffer”
- Apply one or more column addresses
 - fast (~3ns)
- Reads and/or writes

```
One DD3 DRAM bank

<table>
<thead>
<tr>
<th>High order bits</th>
<th>Low order bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row decoder</td>
<td>Column decoder</td>
</tr>
<tr>
<td>DRAM array</td>
<td></td>
</tr>
<tr>
<td>Sense Amps</td>
<td></td>
</tr>
<tr>
<td>Row Buffer</td>
<td></td>
</tr>
</tbody>
</table>

8K bits

Row Address
```

- 16k Rows
- One DD3 DRAM bank
- 8K bits
Accessing DRAM

- Apply the row address
- “opens a page”
- Slow (~12ns read + 24 ns precharge)
- Contents in a “row buffer”
- Apply one or more column addr
- fast (~3ns)
- Reads and/or writes
Accessing DRAM

- Apply the row address
- "opens a page"
- Slow (~12ns read + 24 ns precharge)
- Contents in a "row buffer"
- Apply one or more column addr
- fast (~3ns)
- Reads and/or writes
Accessing DRAM

- Apply the row address
- “opens a page”
- Slow (~12ns read + 24 ns precharge)
- Contents in a “row buffer”
- Apply one or more column addrs
- fast (~3ns)
- Reads and/or writes
Accessing DRAM

- Apply the row address
- "opens a page"
- Slow (~12ns read + 24 ns precharge)
- Contents in a "row buffer"
- Apply one or more column addresses
- Fast (~3ns)
- Reads and/or writes
Accessing DRAM

- Apply the row address
 - "opens a page"
 - Slow (~12ns read + 24 ns precharge)
- Contents in a "row buffer"
- Apply one or more column addr
 - fast (~3ns)
- Reads and/or writes
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
- Contents in a “row buffer”
- Apply one or more column addr
 - fast (~3ns)
- Reads and/or writes

Diagram:
- One DD3 DRAM bank
- 8K bits
- DRAM array
- High order bits
- Low order bits
- Row decoder
- Column decoder
- Sense Amps
- Row Buf
- 16k Rows
- One DD3 DRAM bank
Accessing DRAM

• Apply the row address
 “opens a page”
• Slow (~12ns read + 24 ns precharge)
• Contents in a “row buffer”
• Apply one or more column addr
 fast (~3ns)
• Reads and/or writes
Accessing DRAM

- Apply the row address
- “opens a page”
- Slow (~12ns read + 24 ns precharge)
- Contents in a “row buffer”
- Apply one or more column addresses
- Fast (~3ns)
- Reads and/or writes

Diagram:
- One DD3 DRAM bank
- 8K bits
- High order bits
- Row decoder
- DRAM array
- Sense Amps
- Low order bits
- Column decoder
- Row Buffer
- Column Address
- 16k Rows
- One DD3 DRAM bank
Accessing DRAM

- Apply the row address
 - “opens a page”
 - Slow (~12ns read + 24 ns precharge)
- Contents in a “row buffer”
- Apply one or more column addresses
 - fast (~3ns)
- Reads and/or writes
Accessing DRAM

• Apply the row address
 • “opens a page”
 • Slow (~12ns read + 24 ns precharge)
• Contents in a “row buffer”
• Apply one or more column addr
 • fast (~3ns)
• Reads and/or writes
Accessing DRAM

- Apply the row address
- “opens a page”
- Slow (~12ns read + 24 ns precharge)
- Contents in a “row buffer”
- Apply one or more column addr
- fast (~3ns)
- Reads and/or writes

Diagram:
- One DD3 DRAM bank
- 8K bits
- DRAM array
- Row decoder
- Column decoder
- Sense Amps
- Row Buf
- Column Address
- 16k Rows
- 8K bits
- One DD3 DRAM bank
Accessing DRAM

- Apply the row address
- “opens a page”
- Slow (~12ns read + 24 ns precharge)
- Contents in a “row buffer”
- Apply one or more column addrs
- fast (~3ns)
- Reads and/or writes
DRAM Devices

- There are many banks per die (16 at left)
 - Multiple pages can be open at once.
 - Can keep pages open longer
 - Parallelism

- Example
 - open bank 1, row 4
 - open bank 2, row 7
 - open bank 3, row 10
 - read bank 1, column 8
 - read bank 2, column 32
 - ...

Micron 78nm 1Gb DDR3
DRAM: Micron MT47H512M4
DRAM: Micron
MT47H512M4
DRAM Variants

• The basic DRAM technology has been wrapped in several different interfaces.
 • SDRAM (synchronous)
 • DDR SDRAM (double data-rate)
 • Data clocked on rising and falling edge of the clock.
 • DDR2
 • DDR3
 • GDDR2-5 -- For graphics cards.
DDR3 SDRAM

- DIMM data path is 64bits (72 with ECC)
- Data rate: up to 1066Mhz DDR (2133Mhz effective)
- Bandwidth per DIMM GTNE: 16GB/s
 - guaranteed not to exceed
- Multiple DIMMs can attach to a bus
 - Reduces bandwidth/GB (a good idea?)

Each chip provides one 8-bit slice.
The chips are all synchronized and received the same commands.
Power

- DRAM is a major power sink.
-Idle power: 2-4W/DIMM
-Active power: 5-8W/DIMM

Economou, et. al 2006
DRAM Scaling

- Long term need for performance has driven DRAM hard
 - complex interface.
 - High performance
 - High power.
- DRAM used to be the main driver for process scaling, now it’s flash.
- Power is now a major concern.
- Scaling is expected to match CMOS tech scaling
- F^2 cell size will probably not decrease
- Historical foot note: Intel got its start as a DRAM company, but got out of it when it became a commodity.