
Virtual Memory

1

Learning to Play Well With Others

0x00000

0x10000 (64KB)

Stack

Heap

(Physical) Memorymalloc(0x20000)

Learning to Play Well With Others

Stack

Heap

(Physical) Memory

Stack

Heap

0x00000

0x10000 (64KB)

Learning to Play Well With Others

Stack

Heap

Virtual Memory

0x00000

0x10000 (64KB)

Physical Memory

0x00000

0x10000 (64KB)

Stack

Heap

Virtual Memory

0x00000

0x10000 (64KB)

Learning to Play Well With Others

Stack

Heap

Virtual Memory

0x00000

0x400000 (4MB)

Physical Memory

0x00000

0x10000 (64KB)

Stack

Heap

Virtual Memory

0x00000

0xF000000 (240MB)

Disk
(GBs)

Mapping

• Virtual-to-physical mapping
• Virtual --> “virtual address space”
• physical --> “physical address space”

• We will break both address spaces up into
“pages”
• Typically 4KB in size, although sometimes large

• Use a “page table” to map between virtual pages
and physical pages.

• The processor generates “virtual” addresses
• They are translated via “address translation” into

physical addresses.

6

Implementing Virtual Memory

Physical Address SpaceVirtual Address Space

0

232 - 1 230 – 1 (or whatever)

0

Stack

We need
to keep track of
this mapping…

Heap

The Mapping Process

8

Virtual Page Number Page Offset (log(page size))

Virtual address (32 bits)

Physical address (32 bits)

Page Offset (log(page size))

Virtual-to-physical map

Physical Page Number

Two Problems With VM

• How do we store the map compactly?
• How do we translation quickly?

9

How Big is the map?

• 32 bit address space:
• 4GB of virtual addresses
• 1MPages
• Each entry is 4 bytes (a 32 bit physical address)
• 4MB of map

• 64 bit address space
• 16 exabytes of virtual address space
• 4PetaPages
• Entry is 8 bytes
• 64PB of map

10

Shrinking the map

• Only store the entries that matter (i.e.,. enough
for your physical address space)

• 64GB on a 64bit machine
• 16M pages, 128MB of map

• This is still pretty big.
• Representing the map is now hard because we

need a “sparse” representation.
• The OS allocates stuff all over the place.
• For security, convenience, or caching optimizations
• For instance: The stack is at the “top” of memory. The

heap is at the “bottom”

• How do you represent this “sparse” map?

11

Hierarchical Page Tables

• Break the virtual page number into several pieces
• If each piece has N bits, build an 2N-ary tree
• Only store the part of the tree that contain valid

pages
• To do translation, walk down the tree using the

pieces to select with child to visit.

12

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

Parts of the map that exist

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

Parts that don’t

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

Adapted from Arvind and Krste’s MIT Course 6.823 Fall 05

Making Translation Fast

• Address translation has to happen for every
memory access

• This potentially puts it squarely on the critical for
memory operation (which are already slow)

14

“Solution 1”: Use the Page Table

• We could walk the page table on every memory
access

• Result: every load or store requires an additional
3-4 loads to walk the page table.

• Unacceptable performance hit.

15

Solution 2: TLBs
• We have a large pile of data (i.e., the page table) and we want

to access it very quickly (i.e., in one clock cycle)
• So, build a cache for the page mapping, but call it a “translation

lookaside buffer” or “TLB”

16

TLBs

• TLBs are small (maybe 128 entries), highly-
associative (often fully-associative) caches for
page table entries.

• This raises the possibility of a TLB miss, which
can be expensive
• To make them cheaper, there are “hardware page table

walkers” -- specialized state machines that can load page
table entries into the TLB without OS intervention

• This means that the page table format is now part of the
big-A architecture.

• Typically, the OS can disable the walker and implement
its own format.

17

