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Mapping

• Virtual-to-physical mapping
• Virtual --> “virtual address space”
• physical --> “physical address space”

• We will break both address spaces up into 
“pages”
• Typically 4KB in size, although sometimes large

• Use a “page table” to map between virtual pages 
and physical pages.

• The processor generates “virtual” addresses
• They are translated via “address translation” into 

physical addresses.
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Implementing Virtual Memory
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The Mapping Process
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Two Problems With VM

• How do we store the map compactly?
• How do we translation quickly?
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How Big is the map?

• 32 bit address space:
• 4GB of virtual addresses
• 1MPages
• Each entry is 4 bytes (a 32 bit physical address)
• 4MB of map

• 64 bit address space
• 16 exabytes of virtual address space
• 4PetaPages 
• Entry is 8 bytes
• 64PB of map
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Shrinking the map

• Only store the entries that matter (i.e.,. enough 
for your physical address space)

• 64GB on a 64bit machine
• 16M pages, 128MB of map

• This is still pretty big.
• Representing the map is now hard because we 

need a “sparse” representation.
• The OS allocates stuff all over the place.
• For security, convenience, or caching optimizations
• For instance:  The stack is at the “top” of memory.  The 

heap is at the “bottom”

• How do you represent this “sparse” map?
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Hierarchical Page Tables

• Break the virtual page number into several pieces
• If each piece has N bits, build an 2N-ary tree
• Only store the part of the tree that contain valid 

pages
• To do translation, walk down the tree using the 

pieces to select with child to visit.
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Hierarchical Page Table
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Making Translation Fast

• Address translation has to happen for every 
memory access

• This potentially puts it squarely on the critical for 
memory operation (which are already slow)
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“Solution 1”:  Use the Page Table

• We could walk the page table on every memory 
access

• Result:  every load or store requires an additional 
3-4 loads to walk the page table.

• Unacceptable performance hit.
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Solution 2: TLBs
• We have a large pile of data (i.e., the page table) and we want 

to access it very quickly (i.e., in one clock cycle)
• So, build a cache for the page mapping, but call it a “translation 

lookaside buffer” or “TLB”
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TLBs

• TLBs are small (maybe 128 entries), highly-
associative (often fully-associative) caches for 
page table entries.

• This raises the possibility of a TLB miss, which 
can be expensive
• To make them cheaper, there are “hardware page table 

walkers” -- specialized state machines that can load page 
table entries into the TLB without OS intervention

• This means that the page table format is now part of the 
big-A architecture.

• Typically, the OS can disable the walker and implement 
its own format.
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