
CSE 206A: Lattice Algorithms and Applications Winter 2010

2: Basic Algorithms
Instructor: Daniele Micciancio UCSD CSE

In this lecture we describe e�cient algorithms to solve some basic tasks on point lattices.
We begin by analyzing the running time required to compute the Gram-Schmidt orthogo-
nalization of a basis.

1. Gram-Schmidt orthogonalization

The number of arithmetic operations performed by the Gram-Schmidt orthogonalization
procedure is O(n3). Can we conclude that it runs in polynomial time? Not yet. In order to
prove polynomial time termination, we also need to show that all the numbers involved do
not get too big. This will also be useful later on to prove the polynomial time termination
of other algorithms. Notice that even if the input matrix B is integer, the orthogonalized
matrix B∗ and the coe�cients µi,j will in general not be integers. However, if B is integer
(as we will assume for the rest of this section), then the µi,j and B∗ are rational.
The Gram-Schmidt algorithm uses rational numbers, so we need to bound both the pre-

cision required by these numbers and their magnitude. From the Gram-Schmidts orthogo-
nalization formulas we know that

bi +
∑
j<i

νi,jbj = b∗i

for some reals νi,j. Since b∗i is orthogonal to bt for all t < i we have

〈bt,bi〉+
∑
j<i

νi,j〈bt,bj〉 = 0.

In matrix notation, if we let Bi−1 = [b1, . . . ,bi−1] and (νi)j = νi,j this can be written as:

(BT
i−1 ·Bi−1) · νi = −BT

i−1 · bi

which is an integer vector. Solving the above system of linear equations in variables νi using
Cramer's rule we get

νi,j ∈
Z

det(BT
i−1 ·Bi−1)

=
Z

det(L(Bi−1))2
.

We use this property to bound the denominators that can occur in the coe�cients µi,j and
orthogonalized vectors b∗i . Let Di = det(Bi−1)2 and notice that

Di−1 · b∗i = Di−1 · bi +
∑
j<i

(Di−1νi,j)bj

is an integer combination of integer vectors. So, all denominators that occur in vector b∗i
are factors of Di−1. Let's now compute the coe�cients:

µi,j =
〈bi,b

∗
j〉

〈b∗j ,b∗j〉

=
Dj−1〈bi,b

∗
j〉

Dj−1〈b∗j ,b∗j〉

=
〈bi, Dj−1b

∗
j〉

Dj

∈ Z
Dj

and the denominators in the µi,j must divide Dj.
This proves that all numbers involved in µi,j and b∗i have denominators at most maxk Dk ≤∏
k ‖bk‖2. Finally, the magnitude of the numbers is also polynomial because ‖b∗i ‖ ≤ ‖bi‖, so

all entries in ‖b∗i ‖ are at most ‖bi‖. This proves that the Gram-Schmidt orthogonalization
procedure runs in polynomial time.

Theorem 1. There exists a polynomial time algorithm that on input a matrix B, computes
the Gram-Schmidt orthogonalization B∗

This immediately gives a polynomial time algorithm to compute the derminant of a lattice,
by �rst computing B∗, and then taking the product det(B) =

∏
i ‖b∗i ‖.

Corollary 1. There exists a polynomial time algorithm to compute the determinant of a
lattice.

2. Hermite Normal Form

The Hermite Normal Form (HNF) of an integer or rational matrix B is a special basis for
the lattice generated by B that is useful to solve many other computational tasks. We �rst
de�ne HNF for the special case of square matrices.

De�nition 1. A square, non-singular matrix B = [b1, . . . ,bn] ∈ Rn×n is in Hermite normal
form (HNF) i�

• B is lower triangular (bi,j 6= 0 implies i ≥ j)
• For all i > j, 0 ≤ bi,j < bi,i, i.e., the o�-diagonal elements are reduced modulo the
corresponding diagonal element on the same row.

Now, we generalize this de�nition to (possibly) non-square matrices.

De�nition 2. We say that a non-singular matrix B = [b1, . . . ,bn] ∈ Rm×n is in Hermite
normal form (HNF) i�

• There exists 1 ≤ i1 < . . . < ih ≤ m such that bi,j 6= 0 ⇒ (j < h) ∧ (i ≥ ij) (strictly
decreasing column height).
• For all k > j, 0 ≤ bij ,k < bij ,j, i.e., all elements at rows ij are reduced modulo bij ,j.

The index h is the number of non-zero columns in the matrix, and index ij is the row of the
top non-zero element of column j. Because these terms are strictly increasing, each column
contains rows that none of the later columns have. Thus, the non-zero columns of a matrix
in HNF (as well as the rows with indices ij) are guaranteed to be linearly independent. We
also know (but will not show here) that HNF is unique, i.e., if two matrices B and B′ are in

HNF and they generate the same lattice (L(B) = L (B′)), then B = B′ (except at most for
the number of zero-columns at the end). We say that H is the HNF of B if L(H) = L (B),
H is in HNF, and H does not contain zero columns.
It is not hard to come up with an algorith that computes the HNF of a matrix performing

only a polynomial number of operations. However, a naive solution to this problem may result
in superpolynomial running time because the numbers in the intermediate computations can
easily get very large. In order to achieve polynomial running time, some care is required.
Notice that the problem of computing the HNF of a rational matrix B ∈ Qm×n easily

reduces to the problem of computing the HNF of an integer matrix as follows:

(1) let D be the least common multiple of all denominators occurring in B,
(2) Compute the HNF H of integer matrix D ·B ∈ Zm×n

(3) Output D−1 ·H
It is easy to verify that that H is in HNF if and only if D ·B is. Moreover, if H and D ·B,
generate the same lattice, then D−1 · H and B also generate the same lattice. Therefore,
D−1 ·H is the HNF of B. This reduction is polynomial time because log2D is at most as
big as the bitsize of the input matrix. In the rest of this section we show how to compute
the HNF of an integer matrix.
So, we may assume that the input matrix has integer entries. We �rst give an algorithm to

compute the HNF of matrices with full row rank, and then show how to adapt it to arbitrary
matrices.

2.1. Matrices with full row rank. We give an algorithm that can �nd the HNF of any
matrix B ∈ Zm×n which has full row rank. We know that in this case the HNF of B is
a square non-singular m × m matrix H. The idea is to �rst �nd the HNF basis H of a
sublattice of L(B), and then update H by including the columns of B one by one. Let's
assume for now that we have a polynomial time procedure AddColumn that on input a
square non-singular HNF matrix H ∈ Zm×m and a vector boutputs the HNF of matrix [H|b].
The HNF of B can be computed as follows:

(1) Apply the Gram-Schmidt algorithm to the columns of B to �nd m linearly indepen-
dent columns. Let B′ be the m×m matrix given by these columns.

(2) Compute d = det(B′), using the Gram-Schmidt algorithm or any other polynomial
time procedure. Let H0 = d · I be the diagonal matrix with d on the diagonal.

(3) For i = 1, . . . , n let Hi the result of applying AddColumn to input Hi−1 and bi.
(4) Output Hn.

The correctness of the algorithm is based on the invariant that for all i,Hi is the HNF of
the lattice L([d · I|b1, . . . ,bi]). The invariant is clearly satis�ed for i = 0. Moreover, it
is preserved at every iteration by de�nition of AddColumn. So, upon termination, the
algorithm outputs the HNF of L([d · I|B]). Finally, since d · Zm ⊆ L(B′) ⊆ L(B), we have
L([d · I|B]) = L(B) and the algorithm outputs the HNF of B.
Notice that during the entire process, all the entries of Hi stay bounded by d. In particular,

all the numbers are polynomial in the original input B. So, if AddColumn is polynomial
time, then the entire HNF algorithm is polynomial time. It remains to give an algorithm
for the AddColumn procedure. On input a square non-singular HNF matrix H ∈ Zm×m

and a vector b ∈ Zm, AddColumn proceeds as follows. If m = 0, then there is nothing to

do, and we can immediately terminate with output H. Otherwise, let H=

[
a 0>

h H′

]
and

b =

[
b
b′

]
and proceed as follows:

(1) Compute g = gcd(a, b) and integers x, y such that xa + yb = g using the extended
gcd algorithm.

(2) Apply the unimodular transformation U =

[
x (−b/g)
y (a/g)

]
to the �rst column of H

and b to obtain [
a b
h b′

]
U =

[
g 0
h′ b′′

]
.

(3) Add an appropriate vector from L(H′) to b′′ so to reduce its entries modulo the
diagonal elements of H′.

(4) Recursively invoke AddColumn on input H′ and b′′ to obtain a matrix H′′

(5) Add an appropriate vector from L(H′′) to h′ so to reduce its entries modulo the
diagonal elements of H′′

(6) Output

[
g 0>

h′ H′′

]
2.2. General case. We would like to reduce the general case to the full-dimensional case.
We begin by using a projection operation Π to select B′, a submatrix of B consisting only
of linearly independent rows of B. Then we use the algorithm for the full-dimensional case.
Finally, we use the inverse of the projection operation to get our �nal result.

(1) Run the Gram-Schmidt orthogonalization process on the rows r1, . . . rm of B, and
let K = {k1, . . . , kl} (k1 < . . . < kl) be the set of indices such that r∗ki

6= 0. De�ne

the projection operation ΠK : Rm → Rl by [ΠK(x)]i = xki
. Notice that the rows

rk (k ∈ K) are linearly independent and any other row can be expressed as a linear
combination of the previous rows rj ({j ∈ K : j < i}). Therefore ΠK is one-to-one
when restricted to L (B), and its inverse can be easily computed using the Gram-
Schmidt coe�cients µi,j.

(2) De�ne a new matrix B′ = ΠK(B), which is full-rank, and run the algorithm given in
the previous section to �nd the HNF B′′ of B′.

(3) Apply the inverse projection function, Π−1
K , to the HNF determined in the previous

step (B′′), to give matrix H. It is easy to see that L (H) = L (B) and H is in HNF.
Therefore H is the HNF of B.

This gives us an algorithm for determining the HNF that runs in time polynomial in n,m
and log(d). To complete the proof we need to show that log(d) is polynomial in the bit-size of
the original matrix. Since d is the determinant of a submatrix of B, it is enough to show that
for any square matrix A ∈ Zn×n, size(det(A)) is polynomial in size(A). Using the Hadamerd
inequality vol(P(A)) ≤ Π‖ai‖, we can write

d = | det(A)| ≤ Π‖ai‖

If all aij have bit-size at most α (i.e., lg |bij| ≤ α), we get lg d ≤ n(α+ lg
√
m), proving that

the size of the determinant is polynomial in the size of the matrix.

3. The Dual Lattice

De�nition 3. The dual of a lattice Λ is the set Λ̂ of all vectors x ∈ span(Λ) such that 〈x,y〉
is an integer for all y ∈ Λ.

The dual lattice Λ̂ lives in the same vector space as Λ, but usually it is not a sublattice
of Λ. E.g., even if Λ ⊂ Zn is an integer lattice, the dual will contain noninteger vectors.
The de�nition of dual lattice is very natural if we compare it with the de�nition of dual for
vector spaces. Recall that the dual of an abstract vector space V is de�ned as the set of
linear functions φ : V → R. When V ⊆ Rn, it is customary to represent function φ as a
vector v ∈ V such that φ(x) = 〈v,x〉.The de�nition of dual lattice is analogous to that for
vector spaces, but with R replaced by Z: the dual of a lattice Λ is the set of linear functions
φ : V → Z, represented as vectors in span(Λ).

Theorem 2. The dual of a lattice with basis B is a lattice with basis D = B(B>B)−1.

Proof. First of all notice that span(D) = span(B) and

B>D = B> ·B(B>B)−1 = (B>B)(B>B)−1 = I.

It follows that for any Dy ∈ L(D) and Bx ∈ L(B), we have (Dy)>(Bx) = y>x ∈ Z. So,
L(D) is contained in the dual of L(B). Now consider an arbitrary vector v in the dual of
L(B), satisfying B>v ∈ Zk and v ∈ span(B). It follows that v = Bw for some w ∈ Rn and
D(B>v) ∈ L(D). But DB>v = B(B>B)−1B>Bw = Bw = v. So, v ∈ L(D). This proves
that L(D) is the dual of L(B). �

One can easily check that if D = B(B>B)−1 then B = D(D>D)−1. So, if D is dual to B
then B is dual to D and we can talk of B,D as a pair of dual bases. We can actually give a
more symmetric de�nition of dual basis pair.

De�nition 4. Two bases B,D ∈ Rm×n are dual if

• span(B) = span(D) and
• B>D = I.

It immediately follows that the dual of the dual of a lattice is just the original lattice.
Let's now compute the determinant of the dual lattice.

Proposition 1. For every lattice Λ, det
(

Λ̂
)

= 1
det(Λ)

Proof. Let Λ = L(B) and D = B(B>B)−1.We know that det (Λ) =
√

det(B>B). Therefore

det
(

Λ̂
)

=
√

det(D>D) =
√

det((B>B)−>B>B(B>B)−1) =
√

det(B>B)−1 = 1/ det (Λ) .

�

3.1. The orthogonalized dual basis. We now study how the dual lattice behaves with
respect to basic column operations and the Gram-Schmidt orthogonalization procedure. This
will be useful later on in the course. Let B = [b1, . . . ,bn] be a basis and D be the dual
basis. First of all, consider the elementary column operations, and let's see how the dual
basis should be updated to maintain the relationship D>B = I. The following properties
are easy to verify

(1) If B′ is obtained from B by swapping columns i and j, then the dual basis of B′ is
also obtained from D by swapping columns i and j.

(2) If B′ is obtained from B by multiplying columns i by −1, then the dual basis of B′

is also obtained from D by multiplying column i by −1
(3) If B′ is obtained from B by adding abi to bj, then the dual basis of B′ is obtained

from D by subtracting adj from di.

This gives a simple way to update a basis and its dual at the same time.
Now consider the Gram-Schmidt orthogonalization process:

b∗i = bi −
∑

j<i µi,jb
∗
j where µi,j =

〈bi,b
∗
j 〉

〈b∗j ,b∗j 〉

and the projection operations πi from Rm onto
∑

j≥i Rb∗j :

πi(x) =
n∑

j=i

〈x,b∗j〉
〈b∗j ,b∗j〉

b∗j .

Consider the projected lattice

πi(L) = L ([πi(bi), . . . , πi(bn)]) .

What is the dual of πi(L)? We now show that the dual of πi(L) is the sublattice generated
by di, . . . ,dn.

Proposition 2. Let B,D a pair of dual basis. For all i, [πi(bi), . . . , πi(bn)] and [di, . . . ,dn]
are also dual basis.

Proof. We only need to prove the statement for i = 2. The general statement easily follows
by induction on i. So, let B′ = [π2(b2), . . . , π2(bn)] and D′ = [d2, . . . ,dn]. We want to prove
that B′ and D′ span the same vector space, and (B′)>(D′) = I. Let's prove this second
property �rst. We want to show that for all i 6= j > 1 we have 〈π2(bi),dj〉 = δi,j. Using the
de�nition of π2 we get

〈π2(bi),dj〉 = 〈bi − µi,jb1,dj〉
= 〈bi,dj〉 − µi,jb1,dj〉
= δi,j − µi,jδ1,j = δi,j

because j > 1. This proves that (B′)>(D′) = I. We now show that B′ and D′ span the same
vector space. We know that B and D span the same vector space V . The linear span of B′

is by de�nition the orhogonal complement of b1 in V . Since the vectors d2, . . . ,dn are all
orthogonal to b1 (by de�nition of dual basis) and they are linearly independent, they also
span the orthogonal complement of b1 in V . This complete the proof. �

Now de�ne the orthogonalization of the dual basis in the usual way, but going through
the basis vectors in opposite order from dn to d1.

d†i = di −
∑

j>i ηi,jd
†
j where ηi,j =

〈di,d
†
j〉

〈d†j ,d†j〉

and the corresponding projection operations τi from Rm onto
∑

j≤i Rd†j:

τi(x) =
i∑

j=1

〈x,d†j〉
〈d†j,d

†
j〉

d†j.

It follows by duality that for all i, the dual of [b1, . . . ,bi] is the projected basis [τi(d1), . . . , τi(di)].
In general we have the following.

Theorem 3. Let D be the dual of B. Then for all i ≤ j the dual of [πi(bi), . . . , πi(bj)] is
[τj(di), . . . , τj(dj)].

In particular, when i = j we get the following corollary.

Corollary 2. Let D be the dual of B and let B∗ and D† the corresponding orthogonalized
bases. Then for all i the two vectors b∗i and d†i satisfy

• b∗i
‖b∗i ‖

=
d†i
‖d†i‖

• ‖b∗i ‖ · ‖d
†
i‖ = 1.

4. Easy Lattice Problems

We use the HNF algorithm and the dual lattice to e�ciently solve various basic problems
on lattices.

Basis problem: Given a set of rational vectors B, we want to compute a basis for the
lattice L(B).

This problem is immediately solved (in polynomial time) by computing HNF (B).

Equivalence problem: Given two bases B and B′, we want to determine if they de�ne
the same lattice L (B′) = L(B).

This problem can be solved in polynomial time by computing H = HNF (B) and H′ =
HNF (B′), and checking if H = H′.

Union of lattices: Given two bases B and B′, we want to determine a basis for the
smallest lattice containing both L(B) and L (B′).

It is easy to see that this lattice is generated by [B | B′], so a basis for the lattice can be
easily computed as HNF ([B | B′]).

Containment problem: Given two bases B and B′, we want to determine if L (B′)
is a sublattice of L(B), i.e., L (B′) ⊆ L(B).

This problem is easily reduced to the union and equivalence problems: L (B′) ⊆ L(B) if and
only if L ([B | B′]) = L (B). So, in order to check the inclusion we only need to compute
HNF ([B | B′]) and HNF (B) and check for equality of the HNF bases.

Membership problem: Given a lattice B and a vector v, we want to determine if
v ∈ LB.

This immediately reduces to the containment problem, by checking if L ([v]) ⊆ L(B). If
we need to check membership for many vectors v1, . . . ,vn, then it is convenient to �rst
compute H = HNF (B), and then for every i check if H = HNF ([H | vi]). Notice that
HNF ([H | vi]) can be computed much faster than a HNF matrix computation because most
of the matrix is already in Hermite Normal Form.

Solving linear system: Let Ax = b be a system of linear equations. We want to
�nd a solution x, or tell if no solution exists. (We know this can be done in O(n3)
arithmetic operations. The problem is to show that the numbers stay small.)

We can easily tell if the system admit solution by running Gram-Schmidt on [A | b], and
checking that the last column equals b∗ = 0. Also, we can restrict our attention to solutions
that only use variables for which a∗ 6= 0. So, assume that the columns of A are linearly
independent, and Ax = b for some x. We can also eliminate redundant equations by
running Gram-Schmidt on the rows of [A | b] and throwing away equations for which the
corresponding orthogonalized vector is 0.
So far we have reduced the problem of solving an arbitrary system of linear equations, to

solving a system Ax = b where A is a non-singular square matrix. Then, the system can
be easily solved by computing the HNF (or, equivalently Gram-Schmidt orthogonalization)
of [A | b]T to yield [C | d]T where C is a triangular matrix, and then solve the equivalent
triangular system Cx = d by back substitution. It is easy to see that in this case all
the numbers involved are guaranteed not to get too big, and the system can be solved in
polynomial time. (Note: this is certainly not the fastest way to solve a system of linear
equations. Much faster methods are known.)
As a special case, this shows that the inverse of a non-singular square matrix A can be

computed in polynomial time by solving the equations Axi = ei. The inverse matrix is given
by [x1, . . . ,xn].

Dual Lattice: Given a lattice basis B, compute the dual basis D, i.e., a basis D such
that B>D = I and span(B) = span(D).

This problem is easily solved by computing D as D = B(BTB)−1. Notice that this compu-
tation involves three matrix multiplications, and one matrix inversion.

Intersection of lattices: Given two bases B and B′, we want to determine a basis for
the intersection L (B) ∩ L (B′).

It is easy to show that if L(D) and L (D′) are the dual lattices of L(B) and L (B′), then
the dual of L (B)∩L (B′) is L ([D | D′]). So, a basis for the intersection is obtained by �rst
computing D,D′ and H = HNF ([D | D′]), and then computing the dual of H.

Cyclic lattice: Let r(x) be the cyclic rotation of vector x, i.e., r(x1, . . . , xn) = (xn, x1, x2, . . . , xn−1).
Given a set of vectors B, �nd the cyclic lattice generated by B, i.e., the smallest cyclic
lattice containing B.

This problem is easily solved considering the vectors ri(bj) for all i = 0, . . . , n − 1 and
bj ∈ B, and computing the lattice generated by these vectors.
A similar problem is that of deciding if a given lattice L(B) is cyclic, i.e., if r(L (B)) ⊆
L(B) (in which case, we also have r(L (B)) = L(B). The cyclic lattice decision problem
is easily solved computing HNF (B) and HNF (r(B)) and cheking these two matrices for
equality.

5. Hard lattice problems

We have seen a number of problems on point lattices that can be solved e�ciently, using the
Gram-Schmidt and HNF algorithms and the properties of the dual lattice. For many other
lattice problems no e�cient solution is known, and the problem appear to be computationally
hard, unless one settles for approximate solutions. Among these problems, the most famous
and important ones are the following.

Problem 1. The (approximate) Shortest Vector Problem (SVP): given a lattice basis B �nd
a nonzero lattice vector of length at most γ · λ1(L(B)). The exact version of the problem

is obtained setting the approximation factor to γ = 1, and asking for a vector of length
λ(L(B)).

There is also a problem corresponding to the other successive minima.

Problem 2. The (approximate) Shortest Independent Vectors Problem (SIVP): given a rank
n lattice basis B �nd n linearly independent lattice vectors of length at most γ · λn(L(B)).
The exact version of the problem is obtained setting the approximation factor to γ = 1.

The following is the inhomogeneous version of SVP.

Problem 3. The (approximate) Closest Vector Problem (CVP): given a lattice basis B and
a target vector t, �nd a lattice vector within distance γ · dist(t,L(B)). The exact version of
the problem is obtained setting the approximation factor to γ = 1.
The approximation factor γ is usually a (monotonically increasing) function of the lattice

rank or dimension. Typical approximation factors are γ(n) = nc or γ(n) = 2n. There are
several variants of all the above problems:

• The probems are usually de�ned with respect to the Euclidean norm, but can be
considered with respect to any other norm function. Changing norm a�ects both
the target value (e.g., λ(L(B)) in the case of SVP) one is trying to achieve, and the
measure of quality of the solution (e.g., ‖x‖). Some non-euclidean norms that often
arise in applications are the `1 norm ‖v‖1 =

∑
i |vi| and the `∞ norm ‖v‖∞.

• All problems can be relaxed by asking for just the (approximate) value achieved
by the optimal solution. E.g., for SVP, one can simply ask to approximate the
value λ(L(B)), without necessarily �nding a vector of that length. Similarly for
CVP and SIVP. These relaxed variants of lattice problems are usually formulated as
decision problems, and denoted GapSVP, GapCVP and GapSIVP. For example, in
GapSVP, one is given a lattice basis and a value d, and needs to determine if λ ≤ d
or λ > γd. (When d < λ ≤ γd any answer is acceptable, capturing the slackness of
the approximation.)

Exercise 1. Consider the following two variants of SVP and prove that they are equivalent,
in the sense that each of them can be reduced to the other in polynomial time:

• OptSVP: given a lattice basis B, output a value in the range [λ(L(B)), γ · λ(L(B))]
• GapSVP: given a lattice basis B and a scalar d such that either λ ≤ d or λ > γd,
determine which case holds true.

