Solution of CSE20 Exercise 2

February 16, 2010

Question 1

Represent 38 with a residual number system of moduli \((m_1, m_2, m_3) = (3, 5, 7)\).

\((38 \% 3, 38 \% 5, 38 \% 7) = (2, 3, 3)\)

Question 2

Suppose \((x \% 5, x \% 7, x \% 11) = (1, 2, 3)\). Find the smallest positive integer \(x\) that satisfies this system.

We use the Chinese remainder theorem. Recall that

\[
x \equiv \sum_{i=1}^{k} M_i s_i r_i \pmod{M}
\]

where

\[
M = \prod_{i=1}^{k} m_i,
\]

\[
M_i = \frac{M}{m_i},
\]

and \(s_i\) is the unique value mod \(m_i\) such that

\[
M_i s_i \equiv 1 \pmod{m_i}.
\]

Plugging in our values, we have

\[
M = 5 \cdot 7 \cdot 11 = 385
\]

\[
M_1 = 7 \cdot 11 = 77
\]

\[
M_2 = 5 \cdot 11 = 55
\]

\[
M_3 = 5 \cdot 7 = 35
\]

We now solve for each of the \(s_i\). We need

\[
M_1 s_1 \equiv 1 \pmod{5}
\]

1
or

\[77s_1 \equiv 1 \pmod{5}, \]

which is satisfied by \(s_1 = 3 \). We need

\[M_2s_2 \equiv 1 \pmod{7} \]

or

\[55s_2 \equiv 1 \pmod{7}, \]

which is satisfied by \(s_2 = 6 \). Finally, we need

\[M_3s_3 \equiv 1 \pmod{11} \]

or

\[35s_3 \equiv 1 \pmod{11}, \]

which is satisfied by \(s_3 = 6 \).

Now we plug all our values into the expression from the Chinese remainder theorem.

\[
x \equiv \sum_{i=1}^{k} M_is_ir_i \pmod{M} \\
\equiv \sum_{i=1}^{3} M_is_ir_i \pmod{385} \\
\equiv 77 \cdot 3 \cdot 1 + 55 \cdot 6 \cdot 2 + 35 \cdot 6 \cdot 3 \pmod{385} \\
\equiv 231 + 660 + 630 \pmod{385} \\
\equiv (231 \pmod{385}) + (660 \pmod{385}) + (630 \pmod{385}) \pmod{385} \\
\equiv 231 + 275 + 245 \pmod{385} \\
\equiv 366 \pmod{385}
\]

So the smallest positive number that satisfies this system is 366.

Question 3

Show the operation of 38 + 44 in a residual number system with moduli \((m_1, m_2, m_3) = (3, 5, 7)\).

From question 1, we have 38 is \((2, 3, 3)\) in this system. We represent 44 by

\[(44 \pmod{3}, 44 \pmod{5}, 44 \pmod{7}) = (2, 4, 2).\]

Adding our representations pairwise and modding appropriately, we get

\[
(2 + 2 \pmod{3}, 3 + 4 \pmod{5}, 3 + 2 \pmod{7}) = (4 \pmod{3}, 7 \pmod{5}, 5 \pmod{7}) = (1, 2, 5)
\]
Question 4
Show the operation of 19×15 in a residual number system with moduli $(m_1, m_2, m_3) = (5, 13, 14)$.

We represent 19 in this system by

$$(19 \% 5, 19 \% 13, 19 \% 14) = (4, 6, 5).$$

We represent 15 in this system by

$$(15 \% 5, 15 \% 13, 15 \% 14) = (0, 2, 1).$$

Finally, we multiply pairwise and mod appropriately:

$$(4 \times 0 \% 5, 6 \times 2 \% 13, 5 \times 1 \% 14) = (0 \% 5, 12 \% 13, 5 \% 14)$$

$$= (0, 12, 5)$$

Question 5
Residual Number System: State and prove the Chinese remainder theorem.
Please refer to lecture notes.

Question 6
Prove that for any a and b in the set B of a Boolean algebra, $(a + b)(a + b') = a$.

$$(a + b)(a + b') = a + bb'$$
$$= a + 0$$
$$= a$$

Definition of Complement
0 is identity for +

Question 7
Prove general associativity holds for $+$ in any Boolean algebra: For all $n \geq 1$,

$$a_1 + (a_2 + (a_3 + (\ldots + a_n))) = (((a_1 + a_2) + a_3) + \ldots) + a_n$$

You may assume that associativity holds for $n = 3$.

The proof is by induction on n.
It clearly holds for the case where $n = 1$: $a_1 = a_1$.
It also clearly holds when $n = 2$: $a_1 + a_2 = a_1 + a_2$.
We’re allowed to assume it for $n = 3$: $a_1 + (a_2 + a_3) = (a_1 + a_2) + a_3$.
Now suppose $n > 3$. We are allowed to assume:

$$a_1 + (a_2 + (a_3 + (\ldots + a_k))) = (((a_1 + a_2) + a_3) + \ldots) + a_k$$

for all $k < n$. We must show:

$$a_1 + (a_2 + (a_3 + (\ldots + a_n))) = (((a_1 + a_2) + a_3) + \ldots) + a_n$$
We proceed by use of the induction hypotheses, which allow use to rearrange subterms of the left-hand-side:

\[
a_1 + (a_2 + (a_3 + (\ldots + a_n)))
= a_1 + (((a_2 + a_3) + \ldots) + a_n) \quad \text{Inductive Hypothesis for } n - 1
= (a_1 + ((a_2 + a_3) + \ldots)) + a_n \quad \text{Inductive Hypothesis for } n = 3
= (a_1 + (a_2 + (a_3 + \ldots)) + a_n \quad \text{Inductive Hypothesis for } n - 2
= (((a_1 + a_2) + a_3) + \ldots) + a_n \quad \text{Inductive Hypothesis for } n - 1
\]

Question 8

Boolean Algebra: State and prove De Morgan’s laws.
Please refer to lecture notes.

Question 9

Show the operation tables for a Boolean algebra of four elements.
Let’s have our set \(B = \{0, 1, 2, 3\} \). Let’s begin with empty tables for our operators, + and *:

\[
\begin{array}{c|cccc}
+ & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 2 & 3 \\
3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\ast & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

Let’s pick the identity for + to be 0. By the identity postulate, we must have \(a + 0 = a \) for any \(a \), and also that \(0 + a = a \) by commutativity. We fill in the + table accordingly:

\[
\begin{array}{c|cccc}
+ & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

Similarly, we pick the identity for * to be 3. By the identity postulate, we have \(a \ast 3 = a \), and by commutativity we also have \(3 \ast a = a \). We fill in the *
We can also derive the boundedness laws, which say $a + 3 = 3$ and $a \cdot 0 = 0$ (and, by commutativity, $3 + a = 3$ and $0 \cdot a = 0$). We add the implied entries to the tables:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

We can also derive the idempotency laws: $a + a = a$ and $a \cdot a = a$. So we add the entries implied by this as well:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Now we’re left with only the entries for $2 + 1$, $1 + 2$, $1 \cdot 2$, and $2 \cdot 1$. Clearly the entries for $1 + 2$ and $2 + 1$ must be the same by commutativity; the same is true of $1 \cdot 2$ and $2 \cdot 1$. We notice also that 1 and 2 don’t have complements. Also, 0 and 3 are complements of each other. Because complements are unique, 0 and 3 cannot be complements of 1 and 2; 1 and 2 must be complements of each other. So $1 + 2 = 2 + 1 = 3$ and $1 \cdot 2 = 2 \cdot 1 = 0$ by the complement
postulate:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

It remains to prove that these operations are distributive.

Question 10

Simplify formula \((pq + r')(p + r)(q + r)\)

\[(pq + r')(p + r)(q + r) = (pq + r')(r + p)(r + q)\] Commutativity (Twice)
\[(pq + r')(r + pq)\] Distributivity
\[(pq + r')(pq + r)\] Commutativity
\[pq\] Problem 6

Question 11

Boolean Algebra: Express Boolean function \(E(x, y, z) = (x' + y)(xy)'(x + y' + z)\) in sum-of-products form.

\[(x' + y)(xy)'(x + y' + z) = (x' + y)(x' + y')(x + y' + z)\]
\[= (x' + yy')(x + y' + z)\]
\[= x'(x + y' + z)\]
\[= x'x + x'y' + x'z\]
\[= x'y' + x'z\]

Question 12

Boolean Algebra: Express Boolean function \(E(x, y, z) = xy + (x + z)' + x'y'z\) in product-of-sums form.
Question 13

Prove or disprove the Boolean equation \((a'b' + c)(a + b)(b' + ac)' = a'bc\).

The equation is true.

\[
\begin{align*}
(a'b' + c)(a + b)(b' + ac)' &= (a'b' + c)(a + b)b(a' + c') \\
&= (a'b' + c)b(a' + c') \\
&= (a'b'b + cb)(a' + c') \\
&= (0 + cb)(a' + c') \\
&= cb(a' + c') \\
&= a'cb + c'cb \\
&= a'cb + 0b \\
&= a'cb + 0 \\
&= a'cb \\
&= a'bc \\
\end{align*}
\]

DeMorgan’s Law
Absorption
Distributivity
Complement
Identity
Distributivity
Complement
Boundedness
Identity
Commutativity

Question 14

Boolean Algebra: Reduce the following to an expression of a minimal number of literals (4). \(ab'c'd + ab'c + bc'd + abc' + acd + a'bcd\)

\[
\begin{align*}
ab'c'd + ab'c + bc'd + abc' + acd + a'bcd \\
= ab'c + bc'd + abc' + acd + a'bcd \\
= ab'(c + c') + bc'd + acd + a'bcd \\
= ab' + bc'd + a(b + b')cd + a'bcd \\
= ab' + bc'd + abcd + ab'cd + a'bcd \\
= ab' + bc'd + abcd + a'bcd \\
= ab' + bc'd + (a + a')bcd \\
= ab' + b(c + c')d \\
= ab' + bd
\end{align*}
\]