CSE 20 Lecture 15
Analysis: Inclusion-Exclusion Technique

CK Cheng
Analysis: Inclusion – Exclusion Principle

Ex: A bakery makes only M=3 kinds of cookies. Find the number of ways a person can buy r=4 of the cookies.

\[x+y+z = 4 \] (each variable represents the cookie in that flavor)

\[C(4+2, 2) = \frac{(6*5)}{2!} = 15 \]

\[C(n + m-1, m-1), \]

\(n = \#\text{cookies}, \)

\(m = \#\text{kinds of cookies} \)
Cont. (from last slide)

Ex: Buy 2 cookies out of 3 flavors

\[x + y + z = 2 \]
\[C(2+2, 2) = C(4,2) \]
\[= (4*3)/2! = 6 \]
Cont. (from last slide)

Ex: Buy 8 cookies out of 4 kinds of flavors.

\[x_1 + x_2 + x_3 + x_4 = 8 \]

\[C(8+3,3) = \frac{11!}{(8!3!)} = \frac{(11*10*9)}{3!} = 165. \]

Ex: Buy 20 cookies out of 5 kinds of flavors.

\[x_1 + x_2 + x_3 + x_4 + x_5 = 20 \]

\[C(20+4,4) = \frac{24!}{(20!4!)} = \frac{(24*23*22*21)}{4!} \]
Ex: Possible number of Routing Paths

Assume that the streets are on a grid and the walking distance must be the shortest. Find the number of ways to walk from (0,0) to (6,3).

View from vertical direction:
\[y_0 + y_1 + y_2 + y_3 + y_4 + y_5 + y_6 = 3 \]
\[\Rightarrow \binom{3+6}{6} = \binom{9}{6} = \frac{9!}{6!3!} \]

View from horizontal direction:
\[x_0 + x_1 + x_2 + x_3 = 6 \]
\[\Rightarrow \binom{6+3}{3} = \binom{9}{6} = \frac{9!}{6!3!} \]
Cont. (from last slide)

Ex: On a grid street, find # shortest paths from (1,3) to (2,5).

Formulations: \(x_1 + x_2 = (5-3) \)

Number of combinations: \(C(2+1,1) = 3!/2! \)

Ex: On a Manhattan street, find # shortest paths from (-1,-2) to (5,8).

\[x_0 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = (8-(-2)) \]

Number of combinations:

\[C(10+6, 6) = C(16, 6) = 16!/(10!6!) \]
Integer Linear Equation

Ex: Find the number of integer solutions \(x+y+z = 20 \) with \(x \geq 4, \ y \geq 5, \ z \geq 6 \).

Let \(x' = x-4, \ y' = y-5, \ z' = z-6 \),
i.e. \(x = x' + 4, \ y = y' + 5, \ z = z' + 6 \).

Thus, we have an equivalent formulation:
\[
x' + y' + z' = 5 \text{ with } x', y', z' \geq 0.
\]

#Combinations: \(C(5+2, \ 2) = C(7, 2) = \frac{7!}{(5!2!)} = (7 \times 6)/2 = 21 \)
Ex: \(x+y+z = 20 \), \(x<7 \), \(y<8 \), \(z<9 \)

U: no constraints. \(|U| = C(20+2, 2) \)

A: a set of integer solutions with \(x \geq 7 \)

B: a set of integer solutions with \(y \geq 8 \)

C: a set of integer solutions with \(z \geq 9 \)

A: Let \(x'=x-7 \), i.e. \(x=x'+7 \) \(|A| = C(13+2, 2) \)

\(x'+y+z = 13 \)

B: Let \(y'=y-8 \), i.e. \(y=y'+8 \) \(|B| = C(12+2, 2) \)

\(x+y'+z = 12 \)

C: Let \(z'=z-9 \) \(|C| = C(11+2, 2) \)

\(x+y+z' = 11 \)
Cont. (from last slide)

\(A \cap B: x \geq 7, y \geq 8, \)

Let \(x' = x - 7, y' = y - 8 \)

We have \(x' + y' + z = 5. \)

\(|A \cap B| = C(20-7-8+2, 2) \)

Likewise, we can derive \(|A \cap C| = C(20-7-9+2, 2), |B \cap C| = C(20-8-9+2, 2), |A \cap B \cap C| = 0. \)

According to inclusion and exclusion theorem, the number of solutions is

\[
|U| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| - |A \cap B \cap C|
\]

= 3