Pattern Classification

Biometrics
CSE 190-a
Lecture 4

Announcements

• Readings on E-reserves
• HW1 will be posted shortly
• Project description on web page

Key Probabilities

• $ω_j$ – class label
• X – feature vector
• $P(ω_j)$ – Prior probability of class j
• $P(x)$ – Probability distribution function of feature values.
• $P(x | ω_j)$ – Class conditional density function or likelihood of feature x given $ω_j$
• $P(ω_j | x)$ – posterior probability density function of the class given the feature.

• Posterior, likelihood, evidence

 $P(ω_j | x) = \frac{P(x | ω_j) * P(ω_j)}{P(x)}$ \hspace{1cm} \text{(BAYES RULE)}

 In words, this can be said as:
 Posterior = (Likelihood * Prior) / Evidence

 Where in case of two categories

 $P(x) = \sum_{j=1}^{2} P(x | ω_j)P(ω_j)$

• Intuitive decision rule given the posterior probabilities:
 Given x:
 if $P(ω_1 | x) > P(ω_2 | x)$ \hspace{1cm} \text{True state of nature $= ω_1$}
 if $P(ω_1 | x) < P(ω_2 | x)$ \hspace{1cm} \text{True state of nature $= ω_2$}

 Why do this?: Whenever we observe a particular x, the probability of error is:
 $P(\text{error} | x) = P(ω_j | x)$ if we decide $ω_i$
Let X be a vector of features.

Let $\{\omega_1, \omega_2, \ldots, \omega_c\}$ be the set of c states of nature (or “classes”).

Let $\{\alpha_1, \alpha_2, \ldots, \alpha_a\}$ be the set of possible actions.

Let $\lambda(\alpha_i | \omega_j)$ be the loss for action α_i when the state of nature is ω_j.

What is the Expected Loss for action α_i?

For any given x the expected loss is

$$R(\alpha_i | x) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | x)$$

$R(\alpha_i | x)$ is called the Conditional Risk (or Expected Loss).

Given a measured feature vector x, which action should we take?

Select the action α_i for which $R(\alpha_i | x)$ is minimum.

R is minimum and R in this case is called the Bayes risk = best performance that can be achieved!

Likelihood ratio:

The preceding rule is equivalent to the following rule:

$$\begin{cases}
 \frac{P(x | \omega_1)}{P(x | \omega_2)} > \frac{\lambda_{11} - \lambda_{21}}{\lambda_{22} - \lambda_{12}} \cdot \frac{P(\omega_1)}{P(\omega_2)} \\
 \frac{P(x | \omega_2)}{P(x | \omega_1)} > \frac{\lambda_{22} - \lambda_{12}}{\lambda_{11} - \lambda_{21}} \cdot \frac{P(\omega_2)}{P(\omega_1)}
\end{cases}$$

Then take action α_1 (decide ω_1)

Otherwise take action α_2 (decide ω_2)

Classifiers, Discriminant Functions and Decision Surfaces

- Discriminant Functions: A generalization
- The multi-category case
 - Consider a set of c discriminant functions $g_i(x), i = 1, \ldots, c$
 - The classifier assigns a feature vector x to class ω_i if:
 $$g_i(x) > g_j(x) \iff i = j$$
 - Designing a classifier amounts to specifying the $g_i(x)$

![Figure 2.5](image-url)
Decision Regions

- Feature space divided into c decision regions

 if $g_i(x) > g_j(x)$ $\forall j \neq i$ then x is in R_i

 (R_i means assign x to ω_i)

Decision surfaces

- Boundary between decision regions.

 $\{x : \exists i, j g_i(x) = g_j(x)\}$

Bayes Risk as discriminant function.

- Let $g(x) = R(\omega_i | x)$ (max. discriminant corresponds to min. risk!)

- For the minimum error rate, discriminant function is:

 $g_i(x) = P(\omega_i | x)$

 (max. discrimination corresponds to max. posterior!)

- Any function $F(r)$ which is monotonic over $r>0$ when applied to a set of discriminant functions, yields new discriminant function with the same decision regions/boundaries.

 $g(x) = \ln P(x | \omega_i) = \ln P(\omega_i)$

 (ln: natural logarithm!)

We’ll use this form for Normal distributions

Dichotomizer

- The two-category case

 - A classifier is a “dichotomizer” that has two discriminant functions g_1 and g_2

 Let $g(x) = g_1(x) - g_2(x)$

 Decide ω_1 if $g(x) > 0$; Otherwise decide ω_2

The computation of $g(x)$

 $g(x) = P(\omega_1 | x) - P(\omega_2 | x)$

 $= \ln \frac{P(x | \omega_1)}{P(x | \omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$

The Normal Density

- Univariate density

 - Density which is analytically tractable

 - Continuous density

 - A lot of processes are asymptotically Gaussian

 - Handwritten characters, speech sounds are ideal or prototype corrupted by random process (central limit theorem)

 Where:

 $\mu = \text{mean (or expected value) of } x$

 $\sigma^2 = \text{expected squared deviation or variance}$

FIGURE 2.7: A univariate normal distribution has roughly 95% of its area in the range $|x-\mu| \leq 2\sigma$, as shown. The peak of the distribution has value $p(\mu) = 1/\sqrt{2\pi}$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
Multivariate normal density in \(d \) dimensions is:

\[
P(x) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)\right]
\]

where:
- \(x = (x_1, x_2, \ldots, x_d) \) (stands for the transpose vector form)
- \(\mu = (\mu_1, \mu_2, \ldots, \mu_d) \) mean vector
- \(\Sigma = \text{d by d} \) covariance matrix
- \(|\Sigma|\) and \(\Sigma^{-1}\) are determinant and inverse respectively.

Discriminant Functions for the Normal Density

- We saw that the minimum error-rate classification can be achieved by the discriminant function

\[
g(x) = \ln P(x \mid \omega_i) + \ln P(\omega_i)
\]

- Case of multivariate normal for class condition density (likelihood function)

\[
g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) + \frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln|\Sigma_i| + \ln P(\omega_i)
\]

Case \(\Sigma = \sigma^2 I \) (I stands for the identity matrix)

- A classifier that uses linear discriminant functions is called “a linear machine”

- The decision surfaces for a linear machine are pieces of hyperplanes defined by:

\[
g(x) = g(x)
\]