CSE140L: Components and Design Techniques for Digital Systems Lab

Introduction

Tajana Simunic Rosing

Welcome to CSE 140L!

- Instructor: Tajana Simunic Rosing
 - Email: tajana@ucsd.edu; please put CSE140L in the subject line
 - Ph. 858 534-4868
 - Office Hours: W 11:00-12:00pm; Th 11:30-12:30pm; CSE 2118
- Instructor's Assistant: Sheila Manalo
 - Email: shmanalo@ucsd.edu
 - Phone: (858) 534-8873
- TA: Gautham Reddy Email:greddy@ucsd.edu TA office hrs: Tu/Fri?
- Class Website:
 - <u>http://www.cse.ucsd.edu/classes/wi10/cse140L/</u>
- Grades: <u>http://webct.ucsd.edu</u>

Course Description

- Prerequisites:
 - CSE 20 or Math 15A, and CSE 30.
 - CSE 140 must be taken concurrently
- Objective:
 - Introduce digital components and system design concepts through hands-on experience in a lab
- Grading
 - Labs (4): 70%
 - First two labs will use simulation only, the 2nd two labs will use Xilinx HW
 - Schedule for lab access; need to schedule a demo to TA by lab due date
 - Go to Robin Knox [rsknox@cs.ucsd.edu] office in CSE 2248 to program your student ID for access to CSE 3219
 - Monday-Thursday 10-12:30 and 2:00-4:00
 - Exam: 30%
 - Regrade requests: turn in a written request at the end of the class where your work is returned

Textbook and Recommended Readings

Required textbook:

 Contemporary Logic Design by R. Katz & G. Borriello

- Recommended textbook:
 - Digital Design by F. Vahid

• Lecture slides are derived from the slides designed for both books

Software and Hardware we will use

- Freely available in CSE 3219 lab:
 - Xilinx Virtex-II Pro Development System (XUPV2P)

http://www.xilinx.com/univ/xupv2p.html

- PC in the lab already have ISE tools installed.
 You can program boards in the lab only!
- You can download on your own PC Webpack tools to implement and test your design; this is all that will be needed for the first two labs.

www.xilinx.com/ise/logic_design_prod/webpack.htm

Outline

- Introduction to Xilinx board & tools
- Transistors
 - How they work
 - How to build basic gates out of transistors
 - How to evaluate delay
- Pass gates
- Muxes

Quick intro to Xilinx board and tools

ISE Project Navigator

- Built around the Xilinx design flow
 - Access to synthesis and schematic tools
 - Including thirdparty synthesis tools
 - Implement your design with a simple double-click
 - Fine-tune with easy-to-access software options

Xilinx Design Flow

Combinational circuit building blocks: Transistors, gates and timing

Tajana Simunic Rosing

The CMOS Circuit

- CMOS circuit
 - Consists of N and PMOS transistors
 - Both N and PMOS operate similar to basic switches

Charge/discharge in CMOS

- Calculate on resistance
- Calculate capacitance of the gates circuit is driving
- Get RC delay & use it as an estimate of circuit delay
 V_{out} = V_{dd} (1- e^{-t/RpC})
- Rp ~ 2Rn

- Real gates don't respond immediately to input changes
 - Rise/fall time
 - Delay
 - Pulse width

Waveform view of logic functions

- Just a sideways truth table
 - but note how edges don't line up exactly
 - it takes time for a gate to switch its output!

Timing analysis: Inverter

16

0 🚽

Timing analysis in gates

More complex gates

When is non-ideal gate behavior a good thing?

- Can be useful pulse shaping circuits
- Can be a problem incorrect circuit operation
- Example: pulse shaping circuit
 - $A' \bullet A = 0$
 - delays matter

CSE140: Components and Design Techniques for Digital Systems

Muxes and demuxes

Tajana Simunic Rosing

Pass transistor – Mux building block

Connects X & Y when A=1, else X & Y disconnected
 A_b = not(A)

Multiplexor (Mux)

- Mux routes one of its N data inputs to its one output, based on binary value of select inputs
 - 4 input mux → needs 2 select inputs to indicate which input to route through
 - 8 input mux \rightarrow 3 select inputs
 - N inputs $\rightarrow \log_2(N)$ selects

Mux Internal Design

- Selects input to connect to Y
 - selA == 1: connects A to Y
 - selB == 1: connects B to Y

Multiplexers/selectors

- 2:1 mux: $Z = A'I_0 + AI_1$
- 4:1 mux: $Z = A'B'I_0 + A'BI_1 + AB'I_2 + ABI_3$
- 8:1 mux: $Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$

• In general:
$$Z = \sum_{k=0}^{2^n} (m_k I_k)$$

– in minterm shorthand form for a 2^{n} :1 Mux

N-bit Mux Example

- Four possible display items
 - Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) -- each is 8-bits wide
 - Choose which to display using two inputs x and y
 - Use 8-bit 4x1 mux

Multiplexers as general-purpose logic

- A 2ⁿ⁻¹:1 multiplexer can implement any function of n variables
 - with n-1 variables used as control inputs and
 - the data inputs tied to the last variable or its complement
- Example: F(A,B,C) = ABC + ABC'+A'BC+AB'C

Mux example: Logical function unit

<u>C0</u>	C1	C2	Function	Comments
0	0	0	1	always 1
0	0	1	A + B	logical OR
0	1	0	(A • B)'	logical NAND
0	1	1	A xor B	logical xor
1	0	0	A xnor B	logical xnor
1	0	1	A • B	logical AND
1	1	0	(A + B)'	logical NOR
1	1	1	0	always 0

Demultiplexers/decoders

- Decoders/demultiplexers: general concept
 - single data input, n control inputs, 2ⁿ outputs
 - control inputs (called "selects" (S)) represent binary index of output to which the input is connected
 - data input usually called "enable" (G)

00	<u>Deco</u> = G = G	• S	1	
$\frac{2:4}{00} = 01 = 02 = 02$	G• G•	S1′ S1′	•	S0 S0
02 = 03 =	_	-		

3:8 Decoder:						
00 = G •	S2′ •	S1' • S0'				
01 = G ●	S2′ ●	S1' • S0				
O2 = G ●	S2′ ●	S1 • S0'				
$O3 = G \bullet$	S2′ ●	S1 • S0				
$O4 = G \bullet$	S2 •	S1' • S0'				
O5 = G ●	S2 •	S1' • S0				
06 = G ●	S2 •	S1 • S0'				
O7 = G ●	S2 •	S1 • S0				

Gate level implementation of demultiplexers

- 1:2 decoders
- $\frac{1:2 \text{ Decoder:}}{00 = G \bullet S'}$ $01 = G \bullet S$
- 2:4 decoders

 $\begin{array}{r} 2:4 \ Decoder:\\ \hline 00 = G \bullet S1' \bullet S0'\\ 01 = G \bullet S1' \bullet S0\\ 02 = G \bullet S1 \bullet S0'\\ 03 = G \bullet S1 \bullet S0\end{array}$

Demultiplexers as general-purpose logic (cont'd)

What we've covered thus far

- Xilinx Virtex II Pro board and tools
- Transistor design
- Building basic gates from CMOS
- Delay estimates
- Pass transistors
- Muxes

N-MOS Tutorial – channel formation

 The Semiconductor-Oxide-Metal Combination in the Gate is effectively a <u>Parallel Plate Capacitor</u>

• Vgs = 0 -> lots of positive charge in p-type material, no current

Source: http://www.netsoc.tcd.ie/~mcgettrs/hvmenu/tutorials/TOCcmostran.htm

N-MOS Tutorial – channel formation (cont.)

 Vgs >0 -> + charge on the gate, - charge attracted to the oxide, + charge chased away from the oxide

 Vgs=Vt -> channel of negative charge forms under the oxide; the oxide is depleted of + charge; Vt = threshold voltage

N-MOS Tutorial – channel formation (cont.)

 Vgs>Vt -> negative charge carriers form under the oxide; free electrons are thermally generated and form a conduction channel through which current can flow

• Vgs>Vt & Vds = 0 -> channel present, but no current flows

N-MOS Tutorial: Current flow

- Vds > 0 -> electric field (E) set up between source and drain, accelerates electrons with velocity vd, small current forms between source and drain
 - Cox : oxide capacitance = ε_{ox} / t_{ox} (oxide permittivity ε_{ox} and thickness t_{ox});
 μ: mobility of charge carriers; W/L gate width and length

N-MOS Tutorial: Current flow

- Vds >= Vgs-Vt -> channel pinched off, saturated; constant current flows from drain to source
 - Cox : oxide capacitance = ε_{ox} / tox (oxide permittivity ε_{ox} and thickness tox); μ : mobility of charge carriers; W/L gate width and length

Drain to source voltage [V]

How about P-MOS?

- Everything is the same, but polarities of voltages reverse. Mobility () is 2x smaller, so 2x less current is generated if all other parameters are kept constant
 - e.g. PMOS turns on when Vgs < Vt and both are <0

Resistance

- Resistivity
 - Function of:
 - resistivity r, thickness t : defined by technology
 - Width W, length L: defined by designer
 - Approximate ON transistor with a resistor
 - R = r' L/W
 - L is usually minimum; change only W

Source: Prof. Subhashish Mitra

Capacitance & Timing estimates

- Capacitor
 - Stores charge Q = C V (capacitance C; voltage V)
 - Current: dQ/dt = C dV/dt
- Timing estimate

- D t = C dV/ i = C dV / (V/R_{trans}) = R_{trans}C dV/V

• Delay: time to go from 50% to 50% of waveform

