CSE140L: Components and Design Techniques for Digital Systems Lab

Introduction

Tajana Simunic Rosing
Welcome to CSE 140L!

- **Instructor:** Tajana Simunic Rosing
 - Email: tajana@ucsd.edu; please put CSE140L in the subject line
 - Ph. 858 534-4868
 - Office Hours: W 11:00-12:00pm; Th 11:30-12:30pm; CSE 2118

- **Instructor’s Assistant:** Sheila Manalo
 - Email: shmanalo@ucsd.edu
 - Phone: (858) 534-8873

- **TA:** Gautham Reddy
 - Email: greddy@ucsd.edu
 - TA office hrs: Tu/Fri?

- **Class Website:**
 - http://www.cse.ucsd.edu/classes/wi10/cse140L/

- **Grades:** http://webct.ucsd.edu
Course Description

• Prerequisites:
 – CSE 20 or Math 15A, and CSE 30.
 – CSE 140 must be taken concurrently

• Objective:
 – Introduce digital components and system design concepts through hands-on experience in a lab

• Grading
 – Labs (4): 70%
 • First two labs will use simulation only, the 2nd two labs will use Xilinx HW
 • Schedule for lab access; need to schedule a demo to TA by lab due date
 • Go to Robin Knox [rsknox@cs.ucsd.edu] office in CSE 2248 to program your student ID for access to CSE 3219
 – Monday-Thursday 10-12:30 and 2:00-4:00
 – Exam: 30%
 – Regrade requests: turn in a written request at the end of the class where your work is returned
Textbook and Recommended Readings

• **Required textbook:**
 – Contemporary Logic Design by R. Katz & G. Borriello

• **Recommended textbook:**
 – Digital Design by F. Vahid

• Lecture slides are derived from the slides designed for both books
Software and Hardware we will use

• **Freely available in CSE 3219 lab:**
 - Xilinx Virtex-II Pro Development System (XUPV2P)
 - PC in the lab already have ISE tools installed. You can program boards in the lab only!
 - You can download on your own PC Webpack tools to implement and test your design; this is all that will be needed for the first two labs.
 www.xilinx.com/ise/logic_design_prod/webpack.htm
Outline

• Introduction to Xilinx board & tools
• Transistors
 – How they work
 – How to build basic gates out of transistors
 – How to evaluate delay
• Pass gates
• Muxes
Quick intro to Xilinx board and tools
ISE Project Navigator

• Built around the Xilinx design flow
 – Access to synthesis and schematic tools
 • Including third-party synthesis tools
 – Implement your design with a simple double-click
 • Fine-tune with easy-to-access software options
Xilinx Design Flow

Plan & Budget

Implement
 Translate
 Map
 Place & Route

Create Code/Schematic

Functional Simulation

HDL RTL Simulation

Synthesize to create netlist

Timing Simulation

Create BIT File

Attain Timing Closure
Combinational circuit building blocks: Transistors, gates and timing

Tajana Simunic Rosing
The CMOS Circuit

- **CMOS circuit**
 - Consists of N and PMOS transistors
 - Both N and PMOS operate similar to basic switches

Silicon -- not quite a conductor or insulator:
Semiconductor
Charge/discharge in CMOS

- Calculate on resistance
- Calculate capacitance of the gates circuit is driving
- Get RC delay & use it as an estimate of circuit delay
 \[V_{out} = V_{dd} \left(1 - e^{-t/R_pC} \right) \]
- \(R_p \approx 2R_n \)

Source: Prof. Subhashish Mitra
Non-Ideal Gate Behavior – Delay

- Real gates don’t respond immediately to input changes
 - Rise/fall time
 - Delay
 - Pulse width
Waveform view of logic functions

- Just a sideways truth table
 - but note how edges don’t line up exactly
 - it takes time for a gate to switch its output!

change in Y takes time to "propagate" through gates
Timing analysis: Inverter

\[F = x' \]
Timing analysis in gates

OR

\[F = x \lor y \]

\[F' \]

AND

\[F = x \land y \]

\[F' \]
More complex gates
When is non-ideal gate behavior a good thing?

- Can be useful — pulse shaping circuits
- Can be a problem — incorrect circuit operation
- Example: pulse shaping circuit
 - A’ • A = 0
 - delays matter

D remains high for three gate delays after A changes from low to high

F is not always 0 pulse 3 gate-delays wide
CSE140: Components and Design Techniques for Digital Systems

Muxes and demuxes

Tajana Simunic Rosing
Pass transistor – Mux building block

- Connects X & Y when A=1, else X & Y disconnected
 - \(A_{\text{b}} = \text{not}(A) \)
Multiplexor (Mux)

• Mux routes one of its N data inputs to its one output, based on binary value of select inputs
 • 4 input mux \rightarrow needs 2 select inputs to indicate which input to route through
 • 8 input mux \rightarrow 3 select inputs
 • N inputs \rightarrow $\log_2(N)$ selects
Mux Internal Design

- Selects input to connect to Y
 - \(\text{selA} == 1 \): connects A to Y
 - \(\text{selB} == 1 \): connects B to Y
Multiplexers/selectors

- 2:1 mux: \(Z = A'I_0 + AI_1 \)
- 4:1 mux: \(Z = A'B'I_0 + A'BI_1 + AB'I_2 + ABI_3 \)
- 8:1 mux: \(Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7 \)

- In general: \(Z = \sum_{k=0}^{2^n-1} (m_k I_k) \)
 - in minterm shorthand form for a \(2^n:1 \) Mux
Four possible display items
- Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) -- each is 8-bits wide
- Choose which to display using two inputs x and y
- Use 8-bit 4x1 mux
Multiplexers as general-purpose logic

- A 2^{n-1}:1 multiplexer can implement any function of n variables
 - with n-1 variables used as control inputs and
 - the data inputs tied to the last variable or its complement
- Example: $F(A,B,C) = ABC + ABC'+A'BC+AB'C$
Mux example: Logical function unit

<table>
<thead>
<tr>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>always 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A + B</td>
<td>logical OR</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(A • B)'}</td>
<td>logical NAND</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A xor B</td>
<td>logical xor</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A xnor B</td>
<td>logical xnor</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A • B</td>
<td>logical AND</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(A + B)'}</td>
<td>logical NOR</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>always 0</td>
</tr>
</tbody>
</table>

![8:1 MUX diagram](image)
Demultiplexers/decoders

- Decoders/demultiplexers: general concept
 - single data input, n control inputs, 2^n outputs
 - control inputs (called “selects” (S)) represent binary index of output to which the input is connected
 - data input usually called “enable” (G)

1:2 Decoder:

\[
\begin{align*}
O_0 &= G \cdot S' \\
O_1 &= G \cdot S
\end{align*}
\]

2:4 Decoder:

\[
\begin{align*}
O_0 &= G \cdot S_1' \cdot S_0' \\
O_1 &= G \cdot S_1' \cdot S_0 \\
O_2 &= G \cdot S_1 \cdot S_0' \\
O_3 &= G \cdot S_1 \cdot S_0
\end{align*}
\]

3:8 Decoder:

\[
\begin{align*}
O_0 &= G \cdot S_2' \cdot S_1' \cdot S_0' \\
O_1 &= G \cdot S_2' \cdot S_1' \cdot S_0 \\
O_2 &= G \cdot S_2 \cdot S_1' \cdot S_0' \\
O_3 &= G \cdot S_2 \cdot S_1 \cdot S_0 \\
O_4 &= G \cdot S_2 \cdot S_1' \cdot S_0' \\
O_5 &= G \cdot S_2 \cdot S_1 \cdot S_0 \\
O_6 &= G \cdot S_2 \cdot S_1 \cdot S_0' \\
O_7 &= G \cdot S_2 \cdot S_1 \cdot S_0
\end{align*}
\]
Gate level implementation of demultiplexers

• 1:2 decoders

1:2 Decoder:
O0 = G • S’
O1 = G • S

• 2:4 decoders

2:4 Decoder:
O0 = G • S1’ • S0’
O1 = G • S1’ • S0
O2 = G • S1 • S0’
O3 = G • S1 • S0
Demultiplexers as general-purpose logic (cont’d)

F1 = A'BC'D + A'B'CD + ABCD
F2 = ABC'D' + ABC
F3 = (A' + B' + C' + D')
What we’ve covered thus far

• Xilinx Virtex II Pro board and tools
• Transistor design
• Building basic gates from CMOS
• Delay estimates
• Pass transistors
• Muxes
N-MOS Tutorial – channel formation

- The Semiconductor-Oxide-Metal Combination in the Gate is effectively a **Parallel Plate Capacitor**

- \(V_{gs} = 0 \) -> lots of positive charge in p-type material, no current

- Source: http://www.netsoc.tcd.ie/~mcgettrs/hvmenu/tutorials/TOCcmostran.htm
N-MOS Tutorial – channel formation (cont.)

- $V_{gs} > 0 \rightarrow$ + charge on the gate, - charge attracted to the oxide, + charge chased away from the oxide

- $V_{gs} = V_t \rightarrow$ channel of negative charge forms under the oxide; the oxide is depleted of + charge; $V_t =$ threshold voltage
N-MOS Tutorial – channel formation (cont.)

- $V_{gs} > V_{t} \rightarrow$ negative charge carriers form under the oxide; free electrons are thermally generated and form a conduction channel through which current can flow

- $V_{gs} > V_{t}$ & $V_{ds} = 0 \rightarrow$ channel present, but no current flows
N-MOS Tutorial: Current flow

- $V_{ds} > 0 \rightarrow$ electric field (E) set up between source and drain, accelerates electrons with velocity v_d, small current forms between source and drain
 - C_{ox}: oxide capacitance = $\varepsilon_{ox} / t_{ox}$ (oxide permittivity ε_{ox} and thickness t_{ox});
 - μ: mobility of charge carriers; W/L gate width and length

\[
I_D = \mu C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]
\]
N-MOS Tutorial: Current flow

- $V_{ds} \geq V_{gs} - V_{t}$ -> channel pinched off, saturated; constant current flows from drain to source
 - $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$ (oxide permittivity ε_{ox} and thickness t_{ox});
 - μ: mobility of charge carriers; W/L gate width and length

$$I_{DSat} = \frac{\mu n C_{ox} W}{2 L} \left(V_{GS} - V_{T} \right)^2$$

![Graph showing the current-voltage characteristics of an N-MOS device with different voltage regions: linear, saturation, and limitation.](image)

- Drain current [arbitrary unit]
- Drain to source voltage [V]
How about P-MOS?

• Everything is the same, but polarities of voltages reverse. Mobility (\(\mu \)) is 2x smaller, so 2x less current is generated if all other parameters are kept constant
 – e.g. PMOS turns on when \(V_{gs} < V_{t} \) and both are <0
Resistance

- Resistivity
 - Function of:
 - resistivity r, thickness t: defined by technology
 - Width W, length L: defined by designer
 - Approximate ON transistor with a resistor
 - $R = r' L/W$
 - L is usually minimum; change only W

$$R = \frac{\rho L}{tW} = \frac{\rho}{t} \frac{L}{W}$$
Capacitance & Timing estimates

- **Capacitor**
 - Stores charge \(Q = C \times V \) (capacitance \(C \); voltage \(V \))
 - Current: \(\frac{dQ}{dt} = C \frac{dV}{dt} \)

- **Timing estimate**
 - \(D_t = C \frac{dV}{i} = C \frac{dV}{(V/R_{\text{trans}})} = R_{\text{trans}} C \frac{dV}{V} \)

- **Delay**: time to go from 50% to 50% of waveform

Source: Prof. Subhashish Mitra