Review

- Nonlinear dimensionality reduction (NLDR)
 Given high dimensional data that lies on a low-dimensional manifold, how to compute a faithful embedding?

- Notation: inputs $\vec{x}_i \in \mathbb{R}^D$
 outputs $\vec{y}_i \in \mathbb{R}^d$ with $d \ll D$

- Isomap algorithm
 Step #1: from inputs $\vec{x}_i \in \mathbb{R}^D$, construct neighborhood graph by linking kNN $\sim O(DN^2)$
 Step #2: compute shortest paths thru graph using dynamic programming (DP) $\sim O(N^3)$
 Step #3: from graph distances, compute outputs $\vec{y}_i \in \mathbb{R}^d$ using MDS $\sim O(dN^2)$

- Scaling to large data sets
 Problem: too expensive to compute all shortest paths and eigenvectors of full gram matrix
 Solution: only compute shortest paths for $n \times (N-n)$ slab of distance matrix D_{ij} only compute eigenvectors for nxn subblock of gram matrix G_{ij}
Nystrom approximation

Approximate \(G = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \) by \(\tilde{G} = \begin{pmatrix} A & B \\ B^T & B^T A^T B \end{pmatrix} \)

If \(\text{size}(A) \geq \text{rank}(G) \) and if \(A \) is full rank, then approximation is exact.

Why? Because rows are linearly dependent.

In practice, \(G \) is full rank, but dominated by few large eigenvalues.

Why? Because data is intrinsically low-dimensional.

Approximation not exact but highly accurate.

Timeline

2000: Isomap
2002: Laplacian eigenmaps
2004: Maximum variance unfolding (MVU)

Locally linear embedding (LLE)

Detour: semidefinite programming

Def: a semidefinite program (SDP) is a linear program with an extra constraint that a matrix whose elements are linear in the unknowns is positive semidefinite (PSD) with no negative eigenvalues.

Ex: \(X \) is unknown matrix

Maximize \(\text{tr}(AX) \) such that:

(i) \(\text{tr}(BiX) \geq C_i \) for \(i = 1, \ldots, \# \text{ constraints} \)

(ii) \(X \succeq 0 \) PSD constraint

Convex optimization

If \(X_1 \) and \(X_2 \) are both PSD, then so is \(\lambda X_1 + (1-\lambda)X_2 \) is also PSD for \(\lambda \in [0,1] \).

Efficient (poly-time) algorithms exist to solve SDPs (i.e. compute global optima).
Maximum variance unfolding

- **Outline**
 - Step #1 - compute kNN graph
 - Step #2 - "unfold" graph by solving SDP
 - Step #3 - apply MDS to "unfolded" graph

- **Comparison to Isomap**
 - same in steps #1 and #3
 - SDP vs. DP in step #2

Intuition:
To straighten a string, pull on its ends.
To flatten a sheet, pull on its four corners.
How does this idea extend to higher dimensions?

- **Quadratic programming (QP)**
 Maximize $\sum_i \|\vec{y}_i\|^2$ subject to:
 1. $\|\vec{y}_i - \vec{y}_j\|^2 = \|\vec{x}_i - \vec{x}_j\|^2$ if \vec{x}_i and \vec{x}_j are KNN
 2. $\sum_i \vec{y}_i = \vec{0}$

I.e. maximize variance of output subject to
(i) local distance and (ii) centering constraints.
Note: variance is bounded if kNN graph is connected.

- **Intuition**
 Connect KNN inputs by rigid rods.
Pull inputs apart without breaking rods.
Output find configuration.

- **Alternative formulations of distance constraints**
 $\|\vec{y}_i - \vec{y}_j\|^2 \leq \|\vec{x}_i - \vec{x}_j\|^2$ replace rods by strings
 $\|\vec{y}_i - \vec{y}_j\|^2 \geq \|\vec{x}_i - \vec{x}_j\|^2$ replace rods by springs

- **QP is hard to solve**
 Why? Maximizing (not minimizing) variance.
 Also: $\|\vec{y}_i - \vec{y}_j\|^2 = \|\vec{x}_i - \vec{x}_j\|^2$ not convex.
- Change of variables
 - Gram matrix $K_{ij} = \bar{y}_i \cdot \bar{y}_j$ determines outputs up to global rotation.
 - Replacing $\bar{y}_i \cdot \bar{y}_j$ by K_{ij}:
 \[
 \text{Variance} \quad \sum_i \| \bar{y}_i \|^2 = \sum_i K_{ii} = \text{tr}(K)
 \]
 \[
 \text{Distances} \quad \| \bar{y}_i - \bar{y}_j \|^2 = \| \bar{y}_i \|^2 + \| \bar{y}_j \|^2 - 2 \bar{y}_i \cdot \bar{y}_j = K_{ii} + K_{jj} - 2K_{ij}
 \]
 \[
 \text{Centracing} \quad \sum_i \bar{y}_i = 0 \implies \| (\sum_i \bar{y}_i) \|^2 = 0 \implies \sum_i \bar{y}_i \cdot \bar{y}_j = \sum_i K_{ij} = 0
 \]

- Relax QP to SDP
 - Maximize $\text{tr}(K)$ subject to:
 \[
 \begin{align*}
 (i) & \quad K_{ii} + K_{jj} - 2K_{ij} = \| x_i - x_j \|^2 \quad \text{if} \quad x_i \text{ and } x_j \text{ are kNN} \\
 (ii) & \quad \sum_j K_{ij} = 0 \\
 (iii) & \quad K \succeq 0 \quad (\text{PSD})
 \end{align*}
 \]
 - Constraint (iii) relaxing the implicit rank constraint $\bar{y}_i \in \mathbb{R}^d$ in QP.

- MVU versus PCA
 - PCA maximizes variance of linear projection.
 - MVU maximizes variance of nonlinear (but locally distance-preserving) projections.

- MVU versus Isomap
 - Motivated by isometry
 - Based on constructing Gram matrix
 - Eigenvalues resemble dimensionality

- Differences
 - SDP versus DP
 - Finite vs. asymptotic guarantees
 - Handling of manifolds with "holes"
Scaling

SDP scales at least as $O(n^3 + c^3)$ where

$n =$ size of matrix
$c =$ # constraints

Naive scaling for MVU is $O(k^3N^3)$ for N examples and kNN.

How to improve?