Mixture of factor analyzers

- Graphical model
 \[c \in \{1, 2, -k \} \text{ (hidden)} \]
 \[\bar{x}_e \in \mathbb{R}^d \text{ (observed)} \]
 \[\bar{z} \in \mathbb{R}^d \text{ (hidden)} \]

- Probabilistic model
 \[\text{Prior } P(c) = \pi_c \]
 \[\text{Prior } P(\bar{z}) \sim \exp \left\{ -\frac{1}{2} ||z||^2 \right\} \]
 \[\text{Conditional } P(\bar{x} \mid c, \bar{z}) \sim \exp \left\{ -\frac{1}{2} (\bar{x} - \Lambda_c \bar{z} - \mu_c)^T \Psi_c^{-1} (\bar{x} - \Lambda_c \bar{z} - \mu_c) \right\} \]
 \[\text{Joint } P(\bar{x}, c, \bar{z}) = P(c) P(\bar{z}) P(\bar{x} \mid c, \bar{z}) \]
 \[\text{Marginal } P(\bar{x}) = \sum_c \int_d^d P(\bar{x}, c, \bar{z}) \]

- EM algorithm

 Same structure as FA updates, but with examples weighted by \(P(c \mid \bar{x}_n) \)

 Useful shorthand:
 \[N_c = \sum_{n=1}^N P(c \mid \bar{x}_n) \]
 \[\Delta \bar{x}_n^c = \bar{x}_n - \frac{1}{N_c} \sum_{\ell=1}^N P(c \mid \bar{x}_\ell) \bar{x}_\ell \]
 \[\Delta \bar{z}_n^c = E[\bar{z} \mid c, \bar{x}_n] - \frac{1}{N_c} \sum_{\ell=1}^N P(c \mid \bar{x}_\ell) E[\bar{z} \mid c, \bar{x}_\ell] \]
 \[E[\delta \bar{z} \delta \bar{z}^T \mid c, \bar{x}_n] = E[\bar{z} \bar{z}^T \mid c, \bar{x}_n] - E[\bar{z} \mid c, \bar{x}_n] E[\bar{z} \mid c, \bar{x}_n]^T \]
E-step:
Compute \(P(c|x_n), E[z|x_n, c], E[\delta z \delta z^T|x_n, c] \) (posterior probabilities) using Bayes rule.

M-step:
\[
\Pi_c \leftarrow \frac{N_c}{N}
\]
\[
\Lambda_c \leftarrow \left[\sum_n \sum_{i \text{ new}}^T \frac{P(c|x_n)}{P(c|x_n)} \left(\Delta x_n^c \right) \left(\Delta z_n^c \right)^T \right] \left[\sum_n \sum_{i \text{ new}}^T \frac{E[\delta z \delta z^T|x_n, c]}{E[\delta z \delta z^T|x_n, c]+\Delta z_n^c \Delta z_n^c^T} \right]
\]
\[
\mu_c \leftarrow \frac{1}{N_c} \sum_n P(c|x_n) \left[x_n^c - \Lambda_c \ E[z|x_n, c] \right]
\]
\[
[\Psi_c]_{i;i} \leftarrow \frac{1}{N_c} \sum_n P(c|x_n) \left[(\Delta x_n^c - \Lambda_c \Delta z_n^c)^2_{i;i} + (\Lambda_c \ E[\delta z \delta z^T|x_n, c] \Lambda_c^T)_{i;i} \right]
\]
Converges to local maximum \(L = \sum_{n=1}^N \log P(x_n) \) w.r.t. \(\{\Pi_c, \Lambda_c, \mu_c, \Psi_c\}_{c=1}^k \).
Matrix factorization

- How to approximate a large matrix by the (matrix) product of two smaller ones?

\[
\begin{bmatrix}
\tilde{x}_1 & \tilde{x}_2 & \cdots & \tilde{x}_N
\end{bmatrix} \approx \begin{bmatrix}
\tilde{y}_1 & \tilde{y}_2 & \cdots & \tilde{y}_N
\end{bmatrix}^T \begin{bmatrix}
\tilde{v}_1^T & \tilde{v}_2^T & \cdots & \tilde{v}_d^T
\end{bmatrix}
\]

\(d \ll N \)

\(d \ll D \)

\[X \approx VY \]

- Vector quantization (redux)

To compute prototype \(\tilde{v}_1, \ldots, \tilde{v}_k \):

Minimize quantization error

\[E(V,Y) = \sum_{n=1}^{N} \sum_{i=1}^{k} ||\tilde{x}_n - \tilde{v}_i||^2 Y_{in} \] subject to \(\{ Y_{in} \in \{0,1\} \} \)

\[\sum_{i=1}^{k} \sum_{n=1}^{N} Y_{in} = 1 \]

To compute \(X \approx VY \)

minimize \(||X-VY||^2 = \sum_{n=1}^{N} \sum_{i=1}^{k} [X_{in} - (VY)_{in}]^2 \) subject to constraints

Completely equivalent.

Ex: images of faces

prototypes are typical whole faces

in different parts of face space
To compute basis vectors $\hat{v}_1, \ldots, \hat{v}_d$,
minimize reconstruction error:
$$\sum_{n=1}^{N} \| x_n - \sum_{i=1}^{d} \hat{v}_i (x_n \cdot \hat{v}_i) \|^2$$
subject to $\hat{v}_i \cdot \hat{v}_j = \{ 1 \text{ if } i=j \}$
0 otherwise.

To compute $X \approx VY$,
minimize $\| X - VY \|^2 = \sum_{in} (X_{in} - (VY)_{in})^2$
subject to $V^TV = I_d$

Ex: images of faces

basis vectors ("eigenfaces") are "facial gradients"
of greatest variance around mean face.

(eigenvectors give students "sad" faces)
Non-negative matrix factorization

- How to approximate $X \approx VY$ where
 X, V, and Y only contain non-negative elements?

- Least squares approx error:
 $\varepsilon_{LS} = \| X - VY \|_2^2 = \sum_{in} [X_{in} - (VY)_{in}]^2$

 Trivially, $\varepsilon_{LS} \geq 0$. And $\varepsilon_{LS} = 0 \iff X = VY$

- Non-negative divergence
 $\varepsilon_{KL} = \sum_{in} \left[X_{in} \log \frac{X_{in}}{(VY)_{in}} - X_{in} + (VY)_{in} \right]$

 Reduces to Kullback-Leibler (KL) divergence when $\sum_{in} X_{in} = \sum_{in} (VY)_{in} = 1$.

- Properties of $f(a, b) = a \log \frac{a}{b} - a + b$
 (i) $f(a, b) \geq 0$
 (ii) $f(a, b) = 0 \iff a = b$
 (iii) $f(a, b) \neq f(b, a)$ (that is, not necessary that $f(a, b) = f(b, a)$)
 (iv) $\lim_{a \to 0} f(a, b) = b$
 (v) $\lim_{b \to 0} f(a, b) = \begin{cases} \infty & \text{if } a \neq 0 \\ 0 & \text{if } a = 0 \end{cases}$

- Properties of ε_{KL}
 Like ε_{LS}: From (i)-(ii): $\varepsilon_{KL} = 0 \iff X = VY$
 Unlike ε_{KL}: approx penalty is not symmetric
 - From (iii): approx penalty diverges when (VY) does not "explain" all non-zero matrix elements of X
• NMF yields parts-based representations

 \(\bar{E}_k \): images of faces

 NMF discovers basis vectors that resemble localized facial features (e.g. eyes, nose, mouth, etc...)

 \(\Rightarrow \) "Mr. Potato Head" model

 (non-negative constraint means reconstruction is additive-only)

• Minimization of \(E_{ls} \) and \(E_{kl} \)

 - Neither is possible in closed form due to non-negativity constraints.
 - Look for iterative solutions.

• Decomposition of \(E_{ls} \):

 \[
 E_{ls} = \sum_{i,n} \left[x_{in} - (v y)_{in} \right]^2
 \]

 Define \(E_{ls}^+ = \sum_{i,n} \left[x_{in}^2 + (v y)_{in}^2 \right] \geq 0 \)

 \[E_{ls}^- = 2 \sum_{i,n} x_{in} (v y)_{in} \geq 0 \]

 Clearly: \(E_{ls} = E_{ls}^+ - E_{ls}^- \)

• Non-negative gradients:

 \[
 \frac{\partial E_{ls}^+}{\partial v_{i\alpha}} = 2 \sum_n (v y)_{in} y_{\alpha n} = 2 (v y y^T)_{i\alpha} \geq 0 \text{ for all } i, \alpha
 \]

 \[
 \frac{\partial E_{ls}^-}{\partial v_{i\alpha}} = 2 \sum_n x_{in} y_{\alpha n} = 2 (x y^T)_{i\alpha} \geq 0 \text{ for all } i, \alpha
 \]

 Similar calculations for derivatives w.r.t. \(y_{\alpha n} \)

• Multiplicative update

 Consider: \(v_{i\alpha} \leftarrow v_{i\alpha} \left[\begin{array}{c} \frac{\partial E_{ls}^+}{\partial v_{i\alpha}} \\ -\frac{\partial E_{ls}^-}{\partial v_{i\alpha}} \end{array} \right] \)

 (Why?)