
CSE 291B. Assignment 1

Out: Thu Jan 29
Due: Thu Feb 12

1.1 Gaussian integrals

It is important to be able to work easily (and fearlessly) with multivariate Gaussian distributions. The
following problems will give you some useful practice.

(a) Kullback-Leibler divergence

For continuous distributions P (x) and Q(x), the Kullback-Leibler divergence is defined as:

KL(P,Q) =
∫

dx P (x) log
[
P (x)
Q(x)

]
.

Compute the Kullback-Leibler divergence between two multivariate Gaussian distributions with means
µ1 and µ2 and covariance matrices Σ1 and Σ2.

(b) Hellinger distance

For continuous distributions P (x) and Q(x), the squared Hellinger distance is defined as:

H(P,Q) =
1
2

∫
dx

(√
P (x)−

√
Q(x)

)2

.

Compute the squared Hellinger distance between two multivariate Gaussian distributions with means
µ1 and µ2 and covariance matrices Σ1 and Σ2.

1.2 Relation between EM algorithm and k-means clustering

Consider a Gaussian mixture model (GMM) with hidden variable z ∈ {1, 2, . . . , k} and observed variable
x ∈ <d. The mixture component distributions of the GMM are given by:

P (x|z= i) =
1√

(2π)d|Σi|
exp

{
−1

2
(x− µi)>Σ−1

i (x− µi)
}

.

Show that if Σi = σ2I for all i, where σ2 is a scalar and I is the identity matrix, then:

lim
σ2→0

P (z= i|x) =

{
1 if i = arg minj ‖x−µj‖
0 otherwise
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1.3 Matrix lemmas

Let Ψ ∈ <D×D denote a diagonal square matrix and Λ ∈ <D×d a tall rectangular matrix with d ≤ D. Prove
the matrix inverse and matrix determinant lemmas stated in class:

(Ψ + ΛΛ>)−1 = Ψ−1 −Ψ−1Λ(I + Λ>Ψ−1Λ)−1Λ>Ψ−1

det(Ψ + ΛΛ>) = det(Ψ) det(I + Λ>Ψ−1Λ)

Your proofs may appeal to standard results from linear algebra (e.g., that the determinant of a matrix is equal
to the product of its eigenvalues).

1.4 Factor analysis

In factor analysis of zero mean data, the latent and observed variables are assumed to have the multivariate
Gaussian distributions:

P (z) =
1

(2π)d/2
exp

{
−1

2
z>z

}
,

P (x|z) =
1√

(2π)d|Ψ|
exp

{
−1

2
(x− Λz)>Ψ−1(x− Λz)

}
.

Starting from the above, derive the form of the marginal distribution P (x). In particular, show that P (x) is
a multivariate Gaussian distribution with E[x] = 0 and E[xx>] = Ψ + ΛΛ>.
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1.5 Matrix factorizations

Download the data set for this problem from the course web site. The data set consists of grayscale images
of handwritten digit TWOS. Some of these images are shown below.

The images are stored in MATLAB format as a matrix X with D rows and N columns, where D = 784 is
the number of pixels per image and N = 5958 is the number of images. The ith image in the data set can
be displayed using the command:

imagesc(reshape(X(:, i), 28, 28));

In this problem, you will compute various low rank factorizations of the matrix X ≈ V Y , where V is a
D × k matrix and Y is a k × N matrix, with k = 25. You will also explore the representations that these
factorizations discover. Turn in your source code along with the results requested below.

(a) Vector quantization
Minimize the approximation error ‖X − V Y ‖ subject to the constraints that Yαn ∈ {0, 1} and∑

α Yαn =1. Initialize the k columns of V using the first k columns of X . From your final solu-
tion, display the columns of V as images, and turn in a print-out of these images.

(b) Principal component analysis
Subtract out the mean image from each column of X , and call the resulting matrix X̄ . Minimize the
approximation error ‖X̄−V Y ‖ subject to the constraint that the columns of V are orthonormal. From
your final solution, display the columns of V as images, and turn in a print-out of these images. Also
display the mean image.

(c) Nonnegative matrix factorization
Minimize the approximation error ‖X − V Y ‖ subject to the constraint that matrices V and Y are
nonnegative. Initialize the k columns of V using the first k columns of X , and initialize the matrix Y
by setting every element equal to 1/k. From your final solution, display the columns of V as images,
and turn in a print-out of these images.
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