MultiScalar
Your questions

• How does register allocation work?
• How bad is latency to and from the ARB?
• How scalable is the ARB?
The quest for parallelism

- Single threads have a little bit of ILP
- We want MORE!
- Multithreaded programming is hard
 - Locks are tricky
 - Often, statically available parallelism is just scarce
 - Dynamic data dependences are unpredictable
MultiScalar idea

- Use SW + HW to divide the program into pieces
 - What should the HW look like?
 - How should the SW express the pieces?
- Speculatively run consecutive pieces in parallel
 - Which pieces?
- Clean up the mess
 - This is the tough part.
MultiScalar tasks

- Any dynamic sequence of instructions can be a task
- Arbitrarily large!
- Arbitrarily small!
- Any of number of exits!
- Function calls!
MultiScalar
MultiScalar key points

- Coarse-grain control
- Program decomposition into tasks
- Value forwarding
- Memory disambiguation
- Very, very large instruction window
Decomposing programs

• Chop up the program.
• In principle, you can do this anywhere
 • In practice it’s harder
 • Functions?
 • Entire loops?
• What to large speculative chunks mean?
Tasks

for (indx = 0; indx < BUFSIZE; indx++) {
 /* get the symbol for which to search */
 symbol = SYMVAL(buffer[indx]);

 /* do a linear search for the symbol in the list */
 for (list = listhd; list; list = LNEXT(list)) {
 /* if symbol already present, process entry */
 if (symbol == LELE(list)) {
 process(list);
 break;
 }
 }

 /* if symbol not found in the list, add to the tail */
 if (!list) {
 addlist(symbol);
 }
}

Figure 3: An Example Code Segment.

Figure 4: An Example of a Multiscalar Program.
Coarse grain control

• Aggressive next-task prediction
• Where have seen this before?
• They claim it’s easier than branch prediction -- hmm...
Value forwarding

- Values need to get to speculative threads fast
- Problems:
 - What are the outputs? -- mask
 - What are the inputs? -- mask
 - Which version to use? -- extra bits on the instruction.
Memory disambiguation

• Memory is the hard problem.
• They use an address resolution buffer (ARB)
• Any problems with this?
Figure 1: A Possible Microarchitecture of a Multiscalar Processor.
Large instruction window

Point of Search

ACDE

Window

ACFH

Point of Search

Window
In Context

- MultiScalar is very influential and extremely ambitious.
- Spawned much work in speculative threading on more reasonable architectures.
- If we evaluate it in terms of modern technology, how does it hold up?