Today

- Completing the snapshot protocol
 - A few group proofs
 - Lamport clocks
 - Chandy/Lamport snapshot protocol
 - ... a little bit about distributed deadlock detection
Misdetecting deadlock
Consistent cut

- A global state C is a set of event sequences $\{\sigma_a, \sigma_b, \sigma_c, \ldots\}$, one for each process.
 - The cut is the last event in each sequence.
- C is consistent if, for all events e in C, all events e': $e' \rightarrow e$ are in C.
 - A cut is consistent iff all of states immediately following the cut are concurrent.
Inconsistent cut and global state
Consistent cut and global state
Prove:

- A cut is consistent iff all of states immediately following the cut are concurrent.
 - assume not concurrent
 - $s_i \rightarrow s_j$ implies a send event e_i after s_i and a receive event e_j before s_j: $e_i \rightarrow e_j$.
 - since e_j before s_j, e_j in cut.
 - since e_i after s_i, e_i not in cut.
 - thus, not a consistent cut.
 - assume not consistent cut
 - there is a send event e_j of i and a receive event e_j of j: $e_i \rightarrow e_j$ where e_j in cut and e_i is not in cut.
 - let e'_i be the last event of i and e'_j be the last event of j in the cut. we know $e'_i \rightarrow e_i$, $e_j \rightarrow e'_j$ or $e_j = e'_j$, and $e'_i \rightarrow e'_j$.
 - thus, (state following e'_i) \rightarrow (state following e'_j) and so are not concurrent.
Snapshot

A *snapshot* is a representation of a global state of a system.

- The local state S_i of each process p_i.
- For each pair p_i, p_j of processes, the state $Q_{i,j}$ and $Q_{j,i}$ of the (unidirectional and FIFO) channels between p_i and p_j.

Some process p_x will initiate a snapshot, and will wait to receive the snapshot from all processes (including itself).
Step 1 (take at T_s): Pseudocode

p_x: send(p_x, T_s);

p_i: when (receive(T_s) for the first time, from p_j)
 for (each neighbor $p_k \neq p_j$) send(p_k, T_s);
 when ($C_i == T_s$) {
 record local state S_i;
 for (each neighbor p_k) {
 send(p_k, ⊥);
 record messages $Q_{k,i}$ received from p_k
 sent before T_s;
 }
 }
 send(p_x, S_i, Q_{*_i});
}
Step 1: Proof

Consider an event e that is in the consistent global state X that the protocol constructs.

Let $T(e)$ be the time that e was executed.

For all events e in X, $T(e) \leq T_s$.

Consider another event e': $e' \rightarrow e$.

Since $e' \rightarrow e \Rightarrow T(e') < T(e)$, e' is also in X.

Clock Condition
Logical Clocks

A clock that implements $e' \rightarrow e \Rightarrow T(e') < T(e)$ is called a logical clock.

A simple logical clock is a Lamport clock, which is an integer.

- C_i is initially zero.

- When p_i executes an event e:
 - If e is an internal event, then C_i is increased.
 - If e is a send event of message m, then C_i is increased and piggybacked on the message $m.C$.
 - If e is a receive event of message m, then C_i is set to be larger than both its current value and the value of $m.C$.
Lamport clocks
Step 2

If all we need from time is the clock condition, then we should be able to use the previous protocol with logical clocks rather than real clocks.

Problems:

1. We need a time T_s that is far enough in the future.

 Use some integer value ω that is so large that it can't be reached by normal execution.
Step 2 (continued)

2. Lamport clocks don't take on consecutive values.

 Instead of a process p waiting for clock to have a value t to execute some action a, have p execute a when its clock is about to take on a value greater than or equal to t (as a result of executing an event e).

 At this point, have p execute a before e with a clock equal to t.
Step 2 (continued)

3. How can we ensure liveness?

Having started the flood of \(\omega \), \(p_x \) can set \(C_x \) to \(\omega \) and then send a message to all of its neighbors.

Since channels are FIFO, each neighbor will need to advance its clock to a value greater than \(\omega \) and so will start their snapshot.

The message that will do this is \(\bot \).
Step 2: Pseudocode

\(p_x: \text{send}(p_x, T_s \omega); \)
\(C_i = \omega \)

\(p_i: \text{when (receive}(T_s \omega) \text{ for the first time, from } p_j) \)
\(\quad \text{for (each neighbor } p_k \neq p_j) \text{ send}(p_k, T_s \omega); \)
\(\quad \text{when (} C_i \text{ passes through } \omega) \{ \)
\(\quad \text{record local state } S_i; \)
\(\quad \text{for (each neighbor } p_k) \{ \)
\(\quad \quad \text{send}(p_k, \bot); \)
\(\quad \quad \text{record messages } Q_{j,i} \text{ received from } p_k \)
\(\quad \quad \text{sent before } T_s \omega; \)
\(\quad \} \)
\(\quad \text{send}(p_x, S_i, Q_{*,i}); \)
\}
Step 2: Pseudocode

\(p_x: \) send(\(p_x, \omega \));
\[C_i = \omega; \]

\(p_i: \) when (receive(\(\omega \)) for the first time, from \(p_j \))
 for (each neighbor \(p_k \neq p_j \)) send(\(p_k, \omega \));
 when (\(C_i \) passes through \(\omega \)) {
 record local state \(S_i \);
 for (each neighbor \(p_k \)) {
 send(\(p_k, \bot \));
 record messages \(Q_j,i \) received from \(p_k \)
 sent before \(\omega \);
 }
 send(\(p_x, S_i, Q_{*,i} \));
 }

\[\]
Step 3

\[p_x: \text{ for (each neighbor } p_j) \, \text{send}(p_i, \omega); \]
\[C_i = \omega; \]

This is a local action and can be combined into one.
Step 3 (continued)

\(p_i: \) when (receive(\(\omega \)) for the first time, from \(p_j \))
 for (each neighbor \(p_k \neq p_j \)) send(\(p_k, \omega \));
 when (\(C_i \) passes through \(\omega \)) {
 record local state \(S_i \);
 for (each neighbor \(p_k \)) {
 send(\(p_k, \perp \));
 record messages \(Q_{j,i} \) received from \(p_k \)
 sent before \(\omega \);
 }
 }
 send(\(p_x, S_i, Q*,i \));

The two floods (of \(\omega \) and of \(\perp \)) can be combined into one (of "Take SS").
Need to have \(p_x \) send "Take SS" to itself as well.
Step 3: Pseudocode (Chandy/Lamport)

\(p_x: \) send\((p_x, \ "Take ss")\);

\(p_i: \) when (receive("Take ss") for the first time, from \(p_j \))
 record local state \(S_i \);
 for (each neighbor \(p_k \)) {
 send\((p_k, \ "Take ss")\);
 if \((p_k \neq p_j)\)
 record messages \(Q_{k,i} \) received from \(p_k \)
 until receive\((p_k, \ "Take ss")\);
 else \(Q_{j,i} = \emptyset \)
 }
 send\((p_x, S_i, Q_{*,i})\);
The state that is captured

Let

- S_i be the global state in which the snapshot started
- S_f be the global state in which the snapshot finished
- S^* be the global state the snapshot captured

Consider the actual behavior that went through S_i and S_f. There is an equivalent behavior that goes through S_i, S^*, and S_f.
Proof

Consider the system behavior as a sequence of events. Label each event as *pre* or *post* depending on whether it happened before snapshot at that process or not. All events before S_i are *pre*, and all events after S_f are *post*, but in between there may be *post* events before *pre* events.

Consider two consecutive events $e_1; e_2$ in the behavior such that e_1 is *post* and e_2 is *pre*.
- Can e_1 and e_2 be of the same process?
- Can e_1 be a send with e_2 the corresponding receive?
Proof

- By swapping events like \(e_1 \) and \(e_2 \) events the behavior can be reordered to an equivalent one in which all \textit{pre} events precede all \textit{post} events.
 - The prefixes of \textit{pre} events comprise the consistent cut.
 - The reordering of events does not reorder any \textit{pre} send events nor \textit{post} receive events

 ... so the channel states are accurate.
Two questions

What use is $S_i \sim S^* \sim S_f$?

What happens if two processes start snapshots concurrently?
Detecting RPC deadlock

Define p waits-for* q if p has executed $\text{RPCsend}(q, m)$, q has received this message, and q has not yet executed $\text{RPCreply}(r)$.

- deadlock* iff waits-for* graph has cycle.
- $\square(\text{deadlock}^* \Rightarrow \text{deadlock})$ and $\square(\text{deadlock} \Rightarrow \Diamond \text{deadlock}^*)$.
Detecting RPC deadlock (continued)

- Periodically have some process p_x start a snapshot, where the reported state S_i is the process (if any) from which p_i has received an \texttt{RPCsend} message and to which p_i has not yet executed \texttt{RPCreply}.

- Process p_x uses these states to constructs a waits-for* graph. If it contains a cycle, then the system is RPCdeadlocked*.