Today

☐ Finishing up vector clocks and the real RPC deadlock protocol.
☐ An approach to distributed mutual exclusion.
☐ Basics of quorums and coteries
☐ Weighted voting and other ways to construct a quorum
☐ Consistency
☐ Fault tolerant registers with quorums
Locally stable properties

- A *locally stable* property is a stable property in which a process involved in the stable property will stop executing relevant events.
 - Deadlock is locally stable.
 - Lossy token passing, *there are no more than 2 tokens* is not locally stable.
Basic protocol

- Periodically a process i collects $\{B_1, B_2, \ldots, B_n\}$ and determines whether there exists a \textit{maximal consistent subcut} in which P holds in the \textit{latest consistent subcut}.

\[
\{\forall i \ B_i.s: \forall j: B_i.C[i] \geq B_j.C[i]\}\]

- Safety: if P holds in this consistent subcut, it holds now.
- Liveness: from P being locally stable.
Centralized protocol

- When i executes a relevant event, it records into a buffer B_i its state $B_i.s$ and its vector clock $B_i.C$.
- Periodically a process i collects $\{B_1, B_2, \ldots, B_n\}$ and extracts the subset $\{B_i.s: \forall j: B_i.C[i] \geq B_j.C[i]\}$.
- If P holds on this subset, then detect P.
Decentralization

Define a token \(K = \langle D_1, D_2, ..., D_n \rangle \) where \(D_i \) is either a pair \(\langle B_i.s, B_i.C[i] \rangle \) or \(\perp \).

- A process \(i \) generates an empty token \(\langle \perp, \perp, ..., \perp \rangle \), sets \(K.D_i \) to \(\langle B_i.s, B_i.C[i] \rangle \), and passes it to another process.

- When \(j \) receives \(K \):
 - set \(K.D_j \) to \(\langle B_j.s, B_j.C[j] \rangle \)
 - for all \(D_k: D_k \neq \perp \land D_k.C[k] < B_j.C[k] \), set \(K.D_k \) to \(\perp \).
 - If \(P \) holds on non-\(\perp \) values of \(K \), then detect condition else forward to some \(p_m: D_m = \perp \)
 - or, discard it.
RPC Deadlock

State:

- \(rs_i[i \in 1..n] \): number of RPC reply \(i \) sent to \(j \)
- \(rr_i[i \in 1..n] \): number of RPC reply \(i \) received from \(j \)
- \(wf_i \): process \(i \) (if any) is waiting on.

Relevant events are those that change these variables.

- \(i \) waits-for \(j \) when \((wf_i = j) \land (rs_j[i] = rr_i[j])\)

deadlock iff cycle in waits-for graph
RPC Deadlock: Protocol I

When \(wf_i = j\) for unexpected time, \(i\):

- creates new token \(K\)
- sets \(K.D_i\) to \(\langle rr_i[j], B_i.C[i] \rangle\)
- sends \(K\) to \(j\)
 - Note we send only two integers!
 - First to determine if \(i\) waits on \(j\).
 - Second as part of the protocol.
- Still maintaining vector clocks that count relevant events, buffering relevant event state, etc.
RPC Deadlock: Protocol II

When i receives a token K from j:

- **if** $K.D_i = \bot$
 - **if** $((w_f_i \neq \emptyset) \land (K.D_j.rr_j[i] = B_i.rs_i[j])$
 - **and** $(\forall k: K.D_k \neq \bot: K.D_k.C[k] \geq B_i.C[k]))$
 - **then** $K.D_i = \langle B_i.rr_i[B_i.wf_j], B_i.C[i] \rangle$;
 pass K to $B_i.wf_j$;
 - **else** drop K;
- **else**
 - **if** $(K.D_j.rr_j[i] = B_i.rs_i[j])$ then *detect deadlock*;
 - **else** drop K;
RPC Deadlock: Protocol II

When i receives a token K from j:

if $K.D_i = \bot$

if $((wf_i \neq \emptyset) \land (K.D_j.rr_j[i] = B_i.rs_i[j])$

$\land (\forall k: K.D_k \neq \bot: K.D_k.C[k] \geq B_i.C[k]))$

then

$K.D_i = \langle B_i.rr_i[B_i.wf_j], B_i.C[i] \rangle$;

pass K to $B_i.wf_j$;

else drop K;

else

if $(K.D_j.rr_j[i] = B_i.rs_i[j])$ then *detect deadlock*;

else drop K;
Why compare timestamps?

- If $K.D_j.rr_j[i] = B_i.rs_i[j]$ then j hasn’t subsequently executed a relevant event.
- Since j hasn’t executed a relevant event, neither has a.
- ... and so on along the loop.
 - Don’t need vector clocks.
 - Don’t need separate event buffer.
RPC Deadlock: final protocol

When $\text{wf}_i \neq \emptyset$ for unexpected time

\[i \text{ sends } (rr_i[\text{wf}_i], i) \text{ to } \text{wf}_i. \]

When i receives (s, a) from j:

\begin{align*}
\text{if } (a &\neq i) \\
\text{if } ((\text{wf}_j \neq \emptyset) \land (s = rs_i[j])) &\text{ then send } (rr_i[\text{wf}_i], a) \text{ to } \text{wf}_i; \\
\text{else} &\text{ if } (s = rs_i[j]) \text{ then detect deadlock;}
\end{align*}

Recap

Basics of distributed computing.
- causality
- consistent cuts
- snapshot protocols
- clock condition and logical clocks
- strong clock condition and vector clocks
- the significance of causal delivery order
- RPC deadlock detection
- the value of protocol derivation
Mutual Exclusion (Maekawa)

A more-theoretical-than-practical problem...

- \(N \) processes share a single resource that requires mutually exclusive access
 - Reliable FIFO channels, full connectivity, no process failures
- To obtain mutual exclusion, a process \(i \) asks permission from a quorum: a subset \(Q_i \) of the processes.
 - All processes in \(Q_i \) must grant access for \(i \) to have access
 - For safety, \(\forall 1 \leq i, j \leq N: Q_i \cap Q_j \neq \emptyset \).
 - For performance, \(i \in Q_i \).
 - Minimum quorum size is \(\lceil \sqrt{N} \rceil \)

Maekawa’s Algorithm I

- Requesting mutual exclusion
 - A process i requests mutex by sending a *request* message to each process in Q_i.
 - When process j receives a *request* from i for mutex:
 - If it has not yet handed out its vote, j sends *reply* to i.
 - Otherwise, j queues *request* from i.
 - Process i obtains mutex when it receives a *reply* from all processes in Q_i.
Maekawa’s Algorithm II

- Releasing mutual exclusion
 - When process i releases mutex, it sends a *release* message to each process in Q_i.
 - When process j receives *release*, it sends *reply* to a queued request.
Maekawa’s Algorithm III

Deadlock is possible

\[Q_a = \{a, b, c\} \quad Q_b = \{b, c, d\} \]
\[Q_c = \{c, d, e\} \quad Q_d = \{a, d, e\} \]
\[Q_e = \{a, b, e\} \]

- Processes c, d and e simultaneously request mutex
- a and d vote for d
- b and e vote for e
- c votes for c
Maekawa’s Algorithm IV

Avoiding deadlock:

- Attach a *timestamp* to each message.
 - Can be Lamport clock with process ID to break ties.

- A process *recalls its vote* if it granted out of timestamp order
 - if \(j \) receives a request from \(i \) with higher timestamp than the request granted permission, \(j \) sends *fail* to \(i \).
 - If \(j \) receives a request from \(k \) when it has already voted for a request from \(i \) with a higher timestamp, \(j \) sends *inquire* to \(i \).
 - When \(i \) receives *inquire* it replies with *yield* if it did not succeed getting *votes* from all in \(Q_i \).

- When process gets *release*, it sends *reply* to the queued request with the lowest timestamp.
Maekawa’s Algorithm V

- Maekawa was interested in minimizing the number of messages to obtain mutex.
- But, a similar approach can be used to tolerate failures.
 - Quorum selection issues.
 - Protocol issues.
Majority Quorums

A quorum is a *majority of the processes*
Quorums by assigning votes

A quorum is a *subset of processes with a majority of the votes*
Coteries

A coterie S is a set of quorums that satisfy:

- $Q \in S$ implies $Q \neq \emptyset$ and $Q \subseteq N$.
- $\forall Q_i, Q_j \in S: Q_i \cap Q_j \neq \emptyset$
- $\forall Q_i, Q_j \in S: Q_i \nsubseteq Q_j$

Domination

Let N be $\{a, b, c, d\}$.

$S_1 = \{\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$

$S_2 = \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c, d\}\}$

Note that for each $Q_1 \in S_1 \exists Q_2 \in S_2: Q_2 \subseteq Q_1$

S_2 dominates S_1.
Coteries that have no vote assignments

Coterie over seven processes \{a, ..., g\}: \{a, b\},
\{a, c, d\}, \{a, c, e\}, \{a, d, f\}, \{a, e, f\}, \{b, c, f\},
\{b, d, e\}

\[v(a) + v(b) \geq \text{maj} \]
\[v(a) + v(c) + v(d) \geq \text{maj} \]

\[v(b) + v(c) + v(f) \geq \text{maj} \]
\{b, c, f\} is a quorum

\[v(a) + v(c) + v(f) < \text{maj} \]
\{a, c, f\} is not a quorum

\[v(b) > v(a) \]

\[v(a) + v(c) + v(d) \geq \text{maj} \]
\{a, c, d\} is a quorum

\[v(b) + v(c) + v(d) \geq \text{maj} \]
\{b, c, d\} is a quorum
Maekawa grid quorums (dominated)
Maekawa grid quorums (nondominated)
Better grid quorums
B-Grid Quorums

d columns, h bands,
r rows/band
Common metrics

- **Load** $L(S)$
 - An access strategy W gives the probability that a given quorum $Q \in S$ is accessed.
 - $\ell_w(p)$: the load *induced on* p *by* W.
 - $L_w(S)$: *load induced by* W: maximal load induced by W on any server.
 - $L(S)$: *system load*: minimum over W of $L_w(S)$

- **Resilience** $R(S)$: largest f: for all subsets F: $|F| = f$, there is at least one quorum that does not intersect F.

- **Failure probability** $F_p(S)$: probability that at least one server of every quorum fails.
Comparison

<table>
<thead>
<tr>
<th>S</th>
<th>$L(S)$</th>
<th>$R(S)$</th>
<th>$F_p(S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singleton</td>
<td>1</td>
<td>0</td>
<td>p</td>
</tr>
<tr>
<td>Majority</td>
<td>$\frac{1}{2}$</td>
<td>$\lfloor (n-1)/2 \rfloor$</td>
<td>$e^{-\Omega(n)}$</td>
</tr>
<tr>
<td>Grid</td>
<td>$O\left(1/\sqrt{n}\right)$</td>
<td>$\sqrt{n} - 1$</td>
<td>≈ 1 *</td>
</tr>
<tr>
<td>B-Grid **</td>
<td>$O\left(1/\sqrt{n}\right)$</td>
<td>$O\left(\sqrt{n}\right)$</td>
<td>$O(e^{n^{1/4}/2})$</td>
</tr>
</tbody>
</table>

* for large n.

** for $d^2 = n$, $r = \ln d$, and $0 \leq p \leq 1/3$
Weighted voting to make reading faster

The quorum used for a write needs to intersect any quorum used for a read or used for a write.

The quorums chosen by two read operations don't need to intersect.

... basis of weighted voting: Given total votes in all, choose read quorum size rv and write quorum size wv:

$$2 \times wv \geq total \text{ and } rv + wv \geq total$$

Weighted voting: Example

\[n = 7 \]
\[rv = 4 \]
\[wv = 4 \]
Weighted voting: Example

\[n = 7 \]
\[rv = 2 \]
\[wv = 6 \]

- Sites can crash
- Processes can crash

- Majority
 - Quorum: 5 processes
 - In some step, no quorum can be formed

- Using S_p as quorums
 - In every step, at least one quorum can be formed
Shared register semantics

- Shared data in a *data store* (registers, file system, database).
- Clients access data store through *read* and *write* operations.
 - These operations take time and so can overlapp.
- Consistency semantics: states what clients can expect to obtain when accessing the data store.

Lamport’s model

- **Safe**: a read not concurrent with any write returns the most recently written value.

- **Regular**: safe and a read overlapping a write obtains either the old or the new value.

- **Atomic**: reads and writes are totally ordered so that values returned by reads are the same as if the operations had been performed with no overlapping.
Lamport’s model

- **Safe**: a read not concurrent with any write returns the most recently written value.
- **Regular**: *safe* and a read overlapping a write obtains either the old or the new value.
- **Atomic**: reads and writes are totally ordered so that values returned by reads are the same as if the operations had been performed with no overlapping.

\[
\begin{align*}
\text{r}_1 & \quad \text{r}_2 & \quad \text{r}_3 \\
\text{w}(5) & \quad & \text{w}(6)
\end{align*}
\]
Lamport’s model

- **Safe**: a read not concurrent with any write returns the most recently written value.

- **Regular**: safe and a read overlapping a write obtains either the old or the new value.

- **Atomic**: reads and writes are totally ordered so that values returned by reads are the same as if the operations had been performed with no overlapping.
Lamport’s model

- **Safe**: a read not concurrent with any write returns the most recently written value.

- **Regular**: safe and a read overlapping a write obtains either the old or the new value.

- **Atomic**: reads and writes are totally ordered so that values returned by reads are the same as if the operations had been performed with no overlapping.
Lamport’s model

- Can characterize a register by its *domain* (binary or multivalued), its *semantics* (safe, regular, atomic) and its *access* (SRSW, MRSW, MRMW).

- Most are equally powerful... eg, can implement multi-valued MRMW atomic register from binary SRSW safe register.
Example

- Wish to implement a multi-valued MRSW register B from k binary MRSW registers $b_0, b_1, \ldots, b_{k-1}$.
 - Domain of B is $[0, \ldots, k-1]$.
 - Implementation uses unary encoding.
 - Initially $b_0 = 1$ and $b_1, b_2, \ldots, b_{k-1} = 0$.
Example

Write(B, v):
\[\text{for } i \text{ in } [0.. k - 1] \text{ do } \{
\text{if } (i == v) \text{ Write} (b_i, 1);
\text{else Write} (b_i, 0);
\}\]
\text{return ok;}

Read(B):
\[\text{for } i \text{ in } [0.. k - 1] \text{ do } \{
\text{if } (\text{Read} (b_i) == 1)
\text{return } i;
\text{return } 0;
\}\]

B has safe semantics.
Example

Write\((B, v)\):
\[
\text{Write}(b_v, 1);
\text{for } i \text{ in } [v - 1 .. 0] \text{ do}
\quad \text{Write}(b_i, 0);
\]
\text{return ok;}

Read\((B)\):
\[
\text{for } i \text{ in } [0.. k - 1] \text{ do }
\quad \text{if } (\text{Read}(b_i) == 1)
\quad \text{return } i;
\]
\text{return 0;}

\(B\) has same semantics as \(b_i\).

MRSW regular register with quorums I

- N storage servers that can fail by silently crashing.
 - The servers do not communicate with each other.
 - Clients read and write data to storage servers by sending reliable FIFO asynchronous messages.
 - Clients do not fail.

- *Wait-free*: a client completes every operation independently from server failures and independently from speed of other clients.

- S is a coterie over N.
MRSW regular register with quorums II

Writer maintains a timestamp t.
Each server stores local value v_i and timestamp t_i.

- **Write v:**
 - **client does:**
 - Choose any quorum $Q \in S$.
 - Send (v, t) to each $p \in Q$.
 - until receive *ack* from all in Q. If takes too much time, retry.
 - **server i does:**
 - upon receiving (v, t), set (v_i, t_i) to (v, t) and return *ack*.
MRSW regular register with quorums III

☐ Read:

■ client does:
 ■ Choose any quorum $Q \in S$.
 ■ Send read to each $p \in Q$.
 ■ until receive (v_i, t_i) from all $i \in Q$. If takes too much time, retry.
 ■ return value with maximum timestamp.

■ server i does:
 ■ upon receiving read, return (v_i, t_i).
MRSW atomic register with quorums

write(v):
\[t = t + 1 \]
send \((v, t)\) to all servers
wait for \textit{ack} from all servers in some quorum \(Q \in S\)
return \textit{ok}

read:send \textit{read} to all servers
wait for \((v_i, t_i)\) from all servers \(i\) in some quorum \(Q \in S\)
let \((v, t)\) be the received \((v_i, t_i)\) with largest \(t_i\)
send \((v, t)\) to all server
wait for \textit{ack} from all servers in some quorum \(Q \in S\)
return \(v\)

\textbf{when} receive \((v, t)\) from \(c\): if \((t > t_i)\) \((v_i, t_i) = (v, t)\); send \textit{ack} to \(c\)

\textbf{when receive} \textit{read} from \(c\): send \((v_i, t_i)\) to \(c\)