Choosing a Value: Pseudocode

Phase 1:

a. Proposer c:
 i. Selects a unique proposal number $n > crnd_c$, sets $cval_c$ to none and $crnd_c$ to n.
 ii. Sends a prepare(n) to all acceptors.

b. Acceptor a receives prepare(n) from c:
 i. If $n > rnd_a$ then set rnd_a to n and send promise(rnd_a, $vrnd_a$, $vval_a$) to c.
 ii. Else ignore request.

Phase 2:

a. Proposer c receives promise(rnd_a, $vrnd_a$, $vval_a$) from a majority of acceptors with $rnd_a = crnd_c$:
 i. If all reply with $vrnd_a = 0$, then set $cval_c$ to any proposed value.
 Else set $cval_c$ to $vval_a$ associated with largest received value of $vrnd_a$.
 ii. Send accept($crnd_c$, $cval_c$) to all acceptors.

b. Acceptor a receives accept(n, v):
 i. If $n \geq rnd_a$ and $vrnd_a \neq n$ then set $vrnd_a$ and rnd_a to n and $vval_a$ to v, and send learn(n, v).
 ii. Else ignore request.
Making Paxos Faster

- The normal-case Paxos communication pattern is proposer → leader → acceptors → learners
- In the common case for Paxos, the leader is unconstrained in the value it chooses for `accept(n, v)`.
- So, why not have the leader say `take any value` and have acceptors get values directly from a proposer?
Fast Paxos

- Will call proposal numbers *rounds*.
- Create two kinds of rounds: *fast* and *classic*.
 - In a fast round, if the coordinator can pick any proposed value for 2a, it can instead send $propose(i, \text{any})$.
 - When an acceptor receives $propose(i, \text{any})$ it can treat any proposer’s message proposing a value as if it were an ordinary round i phase 2a message with that value.
 - It can, however, execute a round i phase 2b action only once, for a single value.
Classic Paxos
Fast Paxos

![Diagram of Fast Paxos protocol]

accept(1, any)

accept(1, any)

accept(1, any)
Fast Paxos

accept(1, any)

accept(1, any)

accept(1, any)

accept(1, any)
Problems with Fast Paxos

- How does a coordinator pick a value for 2a?
 - An issue if not in round 1...

- What happens if no value is chosen by 2b?
 - How can we tell this happened?
Picking value for 2a, round i?

- let Q be a quorum of acceptors that have sent phase 1b messages $\text{promise}(vr_a, vv_a)$.
- let k be the largest vr_a for all $a \in Q$.
- let V be the set of values vv_a for all $a \in Q$ with $vr_a = k$.
- if $k = 0$ then pick any proposed value else pick the (only) element of V.

… no longer a sound rule because V can have more than one element…
Picking value for 2a round i

- The coordinator needs to pick a value v: for any round $j < i$, no value other than v has been or might yet be chosen in round j.
 - Recall k be the largest vr_a for all $a \in Q$.
 - if $k = 0$:
 - each $a \in Q$ sent $vr_a = 0$: none had voted for any $j < i$.
 - all $a \in Q$: $rnd_a \geq i$, so no value has been or ever might be chosen for any round $j < i$.
 - thus, coordinator is unconstrained
 - if $k > 0$:
 - three cases: $k < j$, $j = k$, and $j < k$.
Picking value for 2a round i

- if $k < j$: for each $a \in Q$
 - by time sent $promise(vr_a, vv_a)$ had not voted on j.
 - since it promised, a won’t vote on j after sending.
- if $k = j$:
 - acceptor only votes for value sent it by coordinator of round k, so all $a \in Q$ either voted for vv_a or didn’t vote.
- if $k > j$:
 - by induction, held through round k. So, no value other than v has been or might yet be chosen in round j.
Picking value for 2a round i

- if $k < j$: for each $a \in Q$
 - by time sent $\text{promise}(v_{r_a}, v_{v_a})$ had not voted on j.
 - since it promised, a didn’t vote on j after sending.

- if $k = j$:
 - acceptor only votes for value sent it by coordinator of round k, so all $a \in Q$ either voted for v_{v_a} or didn’t vote.

- if $k > j$:
 - by induction, held through round k. So, no value other than v has been or might yet be chosen in round j.

For a fast round, acceptor can vote for any proposed value!
Picking value for 2a round i

- Will be useful to allow different (sized) quorums for different rounds.
 - Quorum for round i is an i-quorum.
 - For any (not necessarily different) rounds i and j, any i-quorum and j-quorum intersect.
Picking value for 2a round i

- A value v might have been or might yet be chosen in round k only if there is a k-quorum R: for each acceptor a in R, a has $\text{rnd}_a \leq k$ or has voted for v in round k.
- Every $a \in Q$ has $\text{rnd}_a \geq i > k$ since it sent its promise.
- So, v might have been or might yet be chosen in round k only if there is a k-quorum R: for all $a \in Q \cap R$: $\text{vr}_a = k$ and $\text{vv}_a = v$.

$A(v)$: There is a k-quorum R:
 for all $a \in Q \cap R$: $\text{vr}_a = k$ and $\text{vv}_a = v$
Condition \(A(ν) \)

\(N = 7, \ t = 3, \) quorum size = 4

\[Q \]

- 1:6
- 1:5
- 1:5
- 1:6
Condition $A(\nu)$

$N = 7$, $t = 3$, quorum size = 4

R_5
Condition $A(v)$

$N = 7, \ t = 3, \ \text{quorum size} = 4 \quad A(5) \ \text{and} \ A(6)$

1:6 1:5 1:6

1:6 1:5 1:5

1:6

R_6
Picking value for 2a round i

- $A(v)$ and $A(w)$ for $v \neq w$:
 - There are two k-quorums R_v and R_w:
 - $\forall a \in R_v \cap Q: vv_a = v$.
 - $\forall a \in R_w \cap Q: vv_a = w$.
 - Note that $R_v \cap R_w \cap Q$, and $R_v \cap R_w$ are all non-empty, but $R_v \cap R_w \cap Q$ must be empty for this to hold.
Condition $A(\nu)$

$N = 7$, $t = 3$, majority = 4
Condition $A(v)$

$N = 7$, $t = 3$, majority = 4
Picking value for 2a round i

… so, let’s ensure $R_v \cap R_w \cap Q$ is not empty!

For any rounds i and j:

- Any i-quorum and j-quorum have a non-empty intersection.
- If j is a fast round, then any i-quorum and two j-quorums have a non-empty intersection.
Classic Quorums and Fast Quorums

- If there are N acceptors, choose E and F:
 - $N - E$ acceptors are a classic quorum
 - $N - F$ acceptors are a fast quorum
 - Since fast quorums have more stringent requirements, they should be at least as large as classic quorums: $E \geq F$.
Classic Quorums and Fast Quorums

- Maximize F: $E = F = \lceil N/3 \rceil$
- Maximize E: $E = \lceil N/2 \rceil - 1$, $E = \lfloor N/4 \rfloor$
 - eg, if $t = 2$, can have $N = 7$, $E = F = 2$.
 - or, can have $N = 5$, $E = 2$, $F = 1$ and run only classic runs if appears that there are two failures.

$2(N-E) > N$, or $N > 2E$

$N-E > 2F$, or $N > 2F + E$
Condition $A(\nu)$

$N = 7, \; E = F = 2$ \hspace{2cm} $A(5)$ and $\neg A(6)$

Condition $A(v)$

$N = 7, E = F = 2 \quad \neg A(4), \neg A(5), \neg A(6)$
Picking value for 2a round i

- let Q be an i-quorum of acceptors that have sent round i phase 1b messages $\text{promise}(vr_a, vv_a)$.
- let k be the largest vr_a for all $a \in Q$.
- let V be the set of values vv_a for all $a \in Q$ with $vr_a = k$.
- if $k = 0$ then pick any proposed value or pick any
- else if V contains only one element w then pick w
- else if $w \in V$ that satisfies $A(w)$ then pick w
- else pick any value in V
Collisions

- Two or more proposers send proposals at about the same time, and they are received in different orders by different acceptors.
 - This may result in no value being chosen.
 - A collision in round i will be noticed by learners if they do not receive an i-quorum of identical values.
 - Coordinators can notice if they are also learner.
 - Acceptors can notice if they are learners, too.
Observation

- Suppose c receives round i phase 2b $learn(i, v)$ from a followed by round $i+1$ phase 1b $promise(r, v)$ from a.
 - Both report a’s vote for round i and promise that a will not vote on any round less than $i+1$.
- So, if coordinator c has received round i $learn(i, v)$ and is starting round $i + 1$, it doesn’t need a’s round $i+1$ $promise$ message to send $accept(i + 1, cval_c)$.
Coordinated Recovery

- i is a fast round and c coordinates both rounds i and $i + 1$.
 - Once c receives round i learn messages from an $(i + 1)$-quorum it starts phase 2a of round $i + 1$.
 - Since V is non-empty, c does not send $accept(i + 1, \text{any})$.
 - This will succeed if the acceptors in a nonfaulty $(i + 1)$-quorum receive these messages before receiving any message from a higher round.
Uncoordinated Recovery

- Both i and $i + 1$ are fast rounds.
 - Acceptors send \textit{learn} messages to all other acceptors.
 - Each acceptor uses the same procedure as in coordinated recovery to pick a value v the coordinator could send in a round ($i + 1$) \textit{accept} message.
Uncoordinated recovery
Uncoordinated recovery

1:4, 1:5, 1:5, 1:6, 1:6

1:4, 4, 1:5, 1:5, 1:6, 1:6

1:4, 1:5, 1:5, 1:6, 1:6

1:4, 1:4, 1:5, 1:5, 1:6, 1:6

1:4, 1:4, 1:5, 1:5, 1:6, 1:6

1:4, 1:4, 1:5, 1:5, 1:6, 1:6

1:5, 1:5, 1:6, 1:6

1:4, 1:5, 1:5, 1:5, 1:6, 1:6

1:4, 1:5, 1:5, 1:6, 1:6

1:4, 1:5, 1:5, 1:6, 1:6

1:4, 1:4, 1:5, 1:5, 1:6, 1:6

1:4, 1:4, 1:5, 1:5, 1:6, 1:6

1:4, 1:4, 1:5, 1:5, 1:6, 1:6
Uncoordinated recovery

4 chosen

2:4
2:4
2:5
2:4
2:5
2:4
Uncoordinated recovery
Uncoordinated recovery

no value chosen
Default recovery

- Any proposer is free to start some round greater than $i + 1$ with a *propose* message.
- This will run phase 1, and a classic phase 2 will reach consensus (barring conflicting proposers).
... is it worth it?

- Common case is faster.
- Requires more bookkeeping or larger quorums.
- Recovering from collisions takes time.
 - Local area networks and using network-level multicast could make collisions unlikely.
Paxos and Atomic Commit

- Recall *atomic commit* protocols.
 - 2 phase commit is blocking in the face of one (or two) well-placed failures.
 - 3 phase commit does not have this weakness, but it requires leader election (which is a perfect failure detector).
 - Consensus only requires ♦ W…
Atomic Commit

- Resource managers (RM) agree on *commit* or *abort*.
- Decision directed by a transaction manager (TM), which can be a resource manager as well.
 - *Stability*: Once an RM has entered *committed* or *aborted* state, it remains in that state.
 - *Consistency*: It is impossible for one RM to be in the *committed* state and another to be in the *aborted* state.
Paxos Commit

- In 2PC, one TM collects the abort/commit votes from the RMs, decides the outcome, and disseminates the result to the RMs.
- In 3PC, if the TM fails, then its failure is detected and a new TM is elected.
 - Created a *precommitted* state to ensure there was no state in which it was possible for an RM to be *committed* and in which it was possible for an RM to be *aborted*.
- We could have TM use consensus once it knows all RMs are in *prepared* state.
 - … but there is a more message efficient approach: we have $2f + 1$ acceptors in the role of transaction managers.
Paxos Commit: algorithm I

- Each resource manager \(i \) has its own instance of Paxos \(Pax(i) \) to agree to prepare or abort.
 - If each instance chooses prepare then commit; else abort.
 - All instances use the same leader and set of acceptors.
 - Acceptors/leader know the set of RM involved in the transaction.
Paxos Commit: algorithm III

- When an RM \(i \) decides to prepare, it sends on behalf of the leader a phase 2a message \(\text{accept}(1, \text{vote}_i) \) in \(\text{Pax}(i) \).
 - This is a phase 2a ballot 1 message. There’s no need for this to have to come from the leader nor to run phase 1.
- When leader receives \(f + 1 \) learn messages for \(\text{Pax}(i) \), it can send phase 3 messages announcing outcome to RMs.
- Transaction committed iff every RM chooses prepared; otherwise is aborted.
 - For efficiency, each acceptor can bundle phase 2b learn messages for all instances into one message.
 - Similarly, the leader can distill all phase 3 learn messages into one message declared commit or abort.
Paxos Commit: algorithm II

- If a new leader starts ballot > 1, then it runs phase 1.
 - If it finds its choice unconstrained, then it should propose *abort* in phase 2.
- In fact, the only way that an instance of Paxos will decide *prepared* is if the associated RM sends *accept*(1, *prepare*).
 - Thus, if an RM i has $vote_i = abort$, then can short-circuit and inform all processes that the decision is to abort.
Cost: I

5 message delays, \((n+1)(t+3) - 4\) messages (with the leader an acceptor).

If each acceptor is on the same node as an RM, and the leader on RM1, then \(n(t+3) - 3\) messages, but still 5 message delays.
Cost: II

4 message delays, \(n(2t+3) - 1 \) messages

If each acceptor is on the same node as an RM, and the leader on RM1, then \((n-1)(2t+3)\) messages, but still 4 message delays.
Cost: III

2 message delays, which is optimal

RM1 Other RMs Leader Acceptors

2a Commit

2a Commit

2b Commit

2b Commit