Consensus when failstop doesn't hold

FLP shows that can't solve consensus in an asynchronous system with no other facility. It can be solved with a perfect failure detector.

If \(p \) suspects \(q \) then \(q \) has crashed.

If \(q \) crashes, then \(p \) eventually suspects \(q \).

Can consensus be solved with something weaker than a perfect failure detector?
Failure Detectors

A *failure detector* is a routine (an *oracle*) that gives information about failures of processes.

$F: T \rightarrow 2^P$ is the set of crashed processes.

F is monotonic: $(p \in F(t)) \Rightarrow (p \in F(t' > t))$.

$crashed(F)$ are the processes that crash at some time

$correct(F) = P - crashed(F)$

$H: P \times T \rightarrow 2^P$ where $H(p, t)$ is the set of processes that p suspects as being crashed at time t.

We read $q \in H(p, t)$ as "p suspects q at time t".

A failure detector D maps F to a set of H.
Failure Detectors: Completeness

How good is the failure detector in detecting a crashed process?

strong: \(\forall F, \forall H \in D(F): \exists t \in T: \)

\(\forall p \in \text{crashed}(F), \forall q \in \text{correct}(F): \forall t' \geq t: p \in H(q, t') \)

(every process that never crashes eventually suspects every process that does crash)

weak: \(\forall F, \forall H \in D(F): \exists t \in T: \)

\(\forall p \in \text{crashed}(F), \exists q \in \text{correct}(F): \forall t' \geq t: p \in H(q, t') \)

(there is a process that never crashes and that eventually suspects every process that does crash)
Failure Detectors: Accuracy

How good is the failure detector in not detecting a correct process?

strong: \(\forall F, \forall H \in D(F): \forall t \in T: \forall p, q \in P-F(t): \)
\[
p \notin H(q, t)\]
(No process ever suspects an uncrashed process)

weak: \(\forall F, \forall H \in D(F): \exists p \in \text{correct}(F): \forall t \in T: \)
\[
\forall q \in P-F(t): p \notin H(q, t)\]
(There is a process that never crashes and that is never suspected)
Failure Detectors: Eventual Accuracy

eventually strong:
\[
\forall F, \forall H \in D(F): \exists t \in T: \forall t' \geq t:
\forall p, q \in \text{correct}(F): p \not\in H(q, t')
\]

eventually weak:
\[
\forall F, \forall H \in D(F): \exists t \in T: \exists p \in \text{correct}(F):
\forall t' \geq t: \forall q \in \text{correct}(F): p \not\in H(q, t')
\]
Failure Detectors: Summary

<table>
<thead>
<tr>
<th></th>
<th>strong completeness</th>
<th>weak completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong accuracy</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>weak accuracy</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>◊-strong accuracy</td>
<td>◊P</td>
<td>◊Q</td>
</tr>
<tr>
<td>◊-weak accuracy</td>
<td>◊S</td>
<td>◊W</td>
</tr>
</tbody>
</table>

Notes:
- **Strong completeness** implies that if a detector detects a failure, it will accurately identify exactly one process that has failed.
- **Weak completeness** allows for the possibility of false positives, where a detector may incorrectly indicate a failure.

Symbols used:
- P: Process that failed
- Q: Process that is authoritative
- S: Process that is still running
- W: Weak process that is still running
Completeness results

Given weak completeness, one can implement strong completeness.

- Let $suspects_p$ be the output of $H(p, t)$.
- Each process p implements $output_p$ which is initially $\{\}$. This is the suspicion set from which p operates.
- Periodically, p sends $\langle p, suspects_p \rangle$ to all.
- When p receives $\langle q, suspects_q \rangle$, p sets
 \[output_p = output_p \cup suspects_q - \{q\} \]

... so, if some correct process permanently suspects a crashed process x, then all correct processes will eventually permanently suspect x.
Failure Detectors: Summary

<table>
<thead>
<tr>
<th></th>
<th>strong completeness</th>
<th>weak completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong accuracy</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>weak accuracy</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>◊-strong accuracy</td>
<td>◊P</td>
<td>◊Q</td>
</tr>
<tr>
<td>◊-weak accuracy</td>
<td>◊S</td>
<td>◊W</td>
</tr>
</tbody>
</table>

The table above illustrates the different failure detectors based on their accuracy and completeness. The symbols P, Q, S, W represent different failure detectors, with ◊ indicating a positive scenario and the absence of ◊ indicating a negative scenario.
Consensus with Failure Detectors

- propose(ν) propose a value ν for consensus
- decide(ν) decide on a consensus value ν

termination: each correct process eventually decides on a value.

uniform integrity: each process decides at most once.

agreement: no two correct processes decide differently.

uniform validity: if a process decides on ν, then some process proposed ν.

uniform agreement: no two processes decide differently.
Reliable Broadcast

In a synchronous model, consensus ≡ reliable broadcast. In an asynchronous model, they're different: no failure detector is needed at all!

\[
\text{R-broadcast}(m) \{ \text{send } m \text{ to all; } \}
\]

when receive \(m \) for the first time {
 if (sender(\(m \)) \neq \text{me}) then send \(m \) to all;
 R-deliver(\(m \));
}

\]
S Consensus

Processs will send and forward each other's initial values.

\[V_p[q] \] will be \(p \)'s knowledge of \(q \)'s initial value \(v_q \):

\[V_p[q] \in \{v_q, \bot\} \]

For each process \(q \), \(p \) will wait to either receive an expected message or detect \(q \)'s failure.

There is some (unknown) correct process \(c \) that is never suspected … so each process will eventually receive \(c \)'s forwarded values.

Construct protocol so that if \(V_c[q] \neq \bot \) then, for all noncrashed processes \(p \), \(V_p[q] \neq \bot \).

That is, if any noncrashed \(p \) has \(V_p[q] = \bot \), then \(c \) has \(V_c[q] = \bot \).

The processes then exchange \(V \) and choose the first non-\(\bot \) value.

Since all get \(V_c \) they will agree on the value.
S Consensus

- Phase 1 consists of \(n - 1 \) rounds
 - In each round a process forwards values it learned in the last round and receives these values from other processes.
 - The rounds aren't necessarily synchronized because the failure detector can have false suspicions.
- Phase 2 processes exchange vector of values they've received during phase 1.
- In phase 3 they decide.
S Consensus (protocol)

variables for process p:
- V_p: array of learned proposed values (\perp if none).
- Δ_p: array of proposed values learned in this round (for phase 1).
- $msgs_p[r]$: messages p received in round r of phase 1.
- $lastmsg_p$: messages p received in phase 2.

$propose(v_p)$:
- $V_p = \langle \perp, \perp, ..., \perp \rangle$;
- $V_p[p] = v_p$;
- $\Delta_p = V_p$;
S Consensus (protocol, continued)

Phase 1 // repeatedly forward values newly learned
for $r_p = 1$ to $n - 1$
 send(r_p, Δ_p, p) to all;
 for each q: receive (r_p, Δ_q, q) or suspect q;
 $msgs_p[r_p] =$ messages received with round r_p;
 $\Delta_p = \langle \bot, \bot, ..., \bot \rangle$;
 for $k = 1$ to n
 if ($V_p[k] = \bot \land \exists (r_p, \Delta_q, q) \in msgs_p[r_p]: \Delta_q[k] \neq \bot$)
 $V_p[k] = \Delta_p[k] = \Delta_q[k]$;
S Consensus (protocol, continued)

Phase 2 // agree on vectors

send V_p to all;

for each q: received V_q or suspect q;

$lastmsgs_p = $ messages received in phase 2;

for $k = 1$ to n

if ($\exists V_q$ in $lastmsgs_p: V_q[k] == \bot$) $V_p[k] = \bot$;

Phase 3

Decide on the first non-\bot component of V_p;
S-consensus (proof, \(n > t \))

Lemma 1: \(\forall p, q: V_p[q] \in \{v_q, \bot\} \)

Straightforward observation based on how values are assigned.

Lemma 2: Each correct process eventually reaches phase 3.
From strong completeness.

\[P_1 = \text{the set of processes that complete phase 1} \]
\[P_2 = \text{the set of processes that complete phase 2} \]
\[c = \text{a correct process that is never suspected} \]
S-consensus (proof, continued)

Lemma 3: In each round r of phase 1, $\forall p \in P_1$: $msgs_p[r]$ contains (r, Δ_c, c).
Because c is correct and never suspected.

Define $V \leq V' \equiv \forall q: V[q] \in \{V'[q], \bot\}$

Lemma 4: $\forall p \in P_1$: $V_c \leq V_p$ at end of phase 1.
Let c first set $V_c[q]$ to v_a in round r.
If $r < n - 1$ then c will set $\Delta_c[q]$ to v_q in r.
... by Lemma 3 p will get v_q in $r + 1$.
If $r = n - 1$ then each other process has already forwarded v_q (each process forwards a value no more than once).
S-consensus (proof, continued)

Lemma 5: \(\forall p \in P_2: V_c = V_p \) at end of phase 2.

Consider \(V_p[q] \) and \(V_c[q] \).

If \(V_p[q] = v_q \), then from Lemma 4, at the end of phase 1, each process \(p \) has \(V_p[q] = v_q \). Hence, \(V_p[q] = V_c[q] = v_q \) at the end of phase 2.

If \(V_c[q] = \bot \), then since \(c \) is never suspected as being faulty, by the end of Phase 2 each process will have received \(V_c \) and set \(V_p[q] = \bot \).

So, uniform agreement holds.
S Consensus

There is an unbounded period of time during which all processes may be suspected.

Use a *rotating coordinator* scheme:

- Each process p will repeatedly try to establish consensus.
- If p is not suspected by anyone for long enough, then it will succeed.
- S guarantees that eventually there will be some process that is not suspected by anyone.
diamond S Consensus requires $n > 2t$

Run 1: have all in A crash before proposing. By termination and uniform validity, those in B decide 1.
Run 2: have all in B crash before proposing. By termination and uniform validity, those in A decide 0.
Run 3: have all in B suspect A and those in A suspect B until agreement is violated.
S Consensus

- Protocol consists of an unbounded number of rounds
- Each round has a well-known coordinator
- The coordinator obtains values from a quorum, takes the latest value, and writes that value to a quorum.
 - Consensus is reached when a quorum contains the same value.
 - Coordinator knows consensus reached when gets acknowledgements from a quorum.
 - When coordinator knows, it uses reliable broadcast to spread the good news.
◊ S Consensus (protocol)

Variables

\(estimate_p \): \(p \)'s estimate of the decision value
\(state_p \): \{undecided, decided\}
\(r_p \): \(p \)'s current round
\(ts_p \): the last round in which \(p \) updated \(estimate_p \).
\(c_p \): coordinator for round \(r_p \): \((r_p \mod n) + 1 \).

Assume that the processes are \{1, 2, 3, n\}
S Consensus (protocol, continued)

propose(v_p) {
 \[\text{estimate}_p = v_p;\]
 \[\text{state}_p = \text{undecided};\]
 \[r_p = ts_p = 0;\]
 while (\text{state}_p == \text{undecided}) {
 \[r_p = r_p + 1;\]
 \[c_p = (r_p \mod n) + 1;\]
 // ------------ phase 1 ------------
 send (p, r_p, estimate_p ts_p) to c_p;
 // ------------ phase 2 ------------
 if ($p == c_p$)
 receive (q, r_p, estimate_q ts_q) into $msgs_p[r_p]$ until have received from a majority;
 \[t = \text{largest } ts_q \text{ in } msgs_p[r_p];\]
 \[\text{estimate}_p = \text{one of the } \text{estimate}_q \text{ in } msgs_p[r_p] \text{ with } ts_q = t;\]
 send (p, r_p, estimate_p) to all;
S Consensus (protocol, continued)

// ----------- phase 3 -----------
wait until suspect \(c_p \) or receive \((c_p, r_{cp}, \text{estimate}_{cp})\);
if (received)
 \(\text{estimate}_p = \text{estimate}_{cp} \);
 \(ts_p = r_p \);
 send \((p, r_p, \text{ack})\) to \(c_p \);
else send \((p, r_p, \text{nack})\) to \(c_p \);
// ----------- phase 4 -----------
if \((p == c_p)\)
 wait until receive \((q, r_p, \text{ack/nack})\) from majority;
 if (all \text{ack}) R-broadcast \((p, r_p, \text{estimate}_p, \text{decide})\);
}

when R-deliver \((q, r_q, \text{estimate}_q, \text{decide})\) {
 if \((\text{state}_p == \text{undecided})\)
 decide(\text{estimate}_q);
 \text{state}_p = \text{decided};
}
Asynchronous consensus…

◊ W is the weakest failure detector that solves consensus.

It's equivalent to ◊ S.

It's also equivalent to Ω:

Each process p’s failure detector outputs $trust_p$: a single process p believes is correct.

Ω ensures that eventually all correct processes always trust the same correct process.