Simulating authenticated broadcast

For round-based algorithms, a protocol that provides the properties of broadcasting authenticated messages.

Authenticated broadcast

Synchronous-round based

- p broadcasts m in round k: $broadcast(p, m, k)$
- process $accept(p, m, k)$ when:
 - receives (p, m, k)
 - verifies p’s signature.

Correctness: If correct p broadcasts (p, m, k) in round k then every correct process accepts (p, m, k) in the same round.

Unforgeability: If correct p does not broadcast (p, m, k) then no correct process ever accepts (p, m, k).

Relay: If correct p accepts (p, m, k) in round $r \geq k$, then every correct process accepts (p, m, k) by round $r + 1$.
Authenticated Arbitrary Consensus: I

// m ∈ {0, 1}, non-loquacious protocol

process p:
 if (p == p₁) value = m;
 else value = 0;
 for r = 1 to t + 1
 if (value == 1 and (p not broadcast in earlier round))
 broadcast(p, 1, r);
 relay the r – 1 messages accepted in rounds 1, 2, …, r – 1
 that caused value to be set to 1;
 if (in rounds r’ ≤ r accepted (p_k, 1, r_k) from r distinct
 processes p_k including the transmitter p₁)
 value = 1;
 decide value;
Authenticated Arbitrary Consensus: II

- **Validity**
 - $m = 1$
 - p_1 sets value to 1 and broadcasts $(p_1, 1, 1)$.
 - By Correctness every correct process accepts $(p_1, 1, 1)$ in round 1 and sets value to 1.
 - value is never set to another value, so decides value.
 - $m = 0$
 - p_1 sets value to 0 and does not broadcast in round 1.
 - Since value = 0, p_1 never broadcasts in other rounds and decides on 0.
 - By Unforgeability no correct process ever accepts message from p_1.
 - Hence, no correct process sets value to 1, and so decides on 0.
Authenticated Arbitrary Consensus: III

- **Agreement**
 - Some correct p first sets $value$ to 1 at the end of round $r < t + 1$:
 - p accepted messages $(p_k, 1, r_k)$ from at least r distinct processes p_k including p_1.
 - In round $r + 1$ p broadcasts $(p, 1, r + 1)$ and relays the $r - 1$ messages that caused p to set $value$ to 1.
 - By Correctness and Relay, in round $r + 1$ all correct processes accept $(p, 1, r + 1)$ and $(p_k, 1, r_k)$ for $1 \leq k \leq r$, and so sets $value$ to 1.
 - Some correct p first sets $value$ to 1 at the end of round $t + 1$:
 - p accepted $(p_k, 1, r_k)$ from $t + 1$ distinct processes, and at least one must be correct. Say was p_i broadcasting $(p_i, 1, r_i)$ where $r_i \leq t + 1$.
 - So p_i set $value$ to 1 in round $r_i - 1 < t + 1$.
 - The first case above therefore holds.
 - Otherwise, each correct process has $value = 0$ and decides 0.
Simulating authenticated broadcast

- Implement a broadcast primitive that provides *Correctness*, *Unforgeability*, and *Relay* without using cryptographic methods

 - To broadcast a message, a set of processes need to witness the broadcast.
 - A correct process accepts a message only when it knows that there are sufficient witnesses to this broadcast.
 - Doing so prevents a faulty process from claiming to have received a message that was not sent to it, and to allow a correct process to prove why it accepted a message.
 - Requires $n > 3t$.
Handy Facts about $n > 3t$

- Any subset of $n - 2t$ processes contains at least one correct process.
 \[n - 2t > 3t - 2t = t. \]

- The intersection of any two subsets of $n - t$ processes contains at least one correct process.
 \[n - t > 3t - t = 2t. \]

Example: $n = 7$, $t = 2$: $n - 2t = 3$, $n - t = 5$.

\[\begin{array}{cccccc}
 \text{Blue} & \text{Red} & \text{Blue} & \text{Red} & \text{Blue} & \text{Red} \\
\end{array} \]
Basic Idea

- Each round consists of two phases.
- p sends $(init, p, m, k)$ to all.
- Any process that receives this message becomes a witness and sends $(echo, p, m, k)$.
- Any non-witness process that receives at least $n - 2t$ $(echo, p, m, k)$ also becomes a witness and sends $(echo, p, m, k)$.
 - Because in any set of $n - 2t$ processes, one must be correct.
- Any process that receives at least $n - t$ $(echo, p, m, k)$ accepts the message.
 - Because at least $n - 2t$ correct processes sent the echo, and so eventually all correct processes will echo.
Broadcast primitive

Round k:

Phase $2k - 1$: p sends $(init, p, m, k)$ to all;

Phase $2k$: each process executes:
 - if received $(init, p, m, k)$ from p in phase $2k - 1$
 - send $(echo, p, m, k)$ to all;
 - if received $(echo, p, m, k)$ from at least $n - t$ distinct processes in phase $2k$
 - accept (p, m, k);

Round $r > k$:

Phase $2r - 1, 2r$: each process executes:
 - if received $(echo, p, m, k)$ from at least $n - 2t$ distinct processes in previous phases
 - and not sent $(echo, p, m, k)$
 - send $(echo, p, m, k)$ to all;
 - if received $(echo, p, m, k)$ from at least $n - t$ distinct processes in this and previous phases
 - accept (p, m, k);
Correct process sends *init* in $2k - 1$

$n = 7, t = 2$
$n - t = 5$
$n - 2t = 3$
Correct processes accept in $2k$

$n = 7, t = 2$
$n - t = 5$
$n - 2t = 3$

also Unforgeability: if correct p does not send $(init, p, m, k)$ then each correct process will receive no more than t ($echo, p, m, k$) messages. Since $t < n - 2t$, there will be no more witnesses.
Faulty sends *init* in $2k - 1$

$n = 7, \ t = 2$
$n - t = 5$
$n - 2t = 3$
Correct can behave differently in $2k$: I

\[n = 7, \; t = 2 \]
\[n - t = 5 \]
\[n - 2t = 3 \]
Correct can behave differently in $2k$: II

$n = 7, t = 2$
$n - t = 5$
$n - 2t = 3$
Correct can behave differently in $2k$: III

$n = 7, t = 2$
$n - t = 5$
$n - 2t = 3$
Relay: phase i

$n = 7, t = 2$
$n - t = 5$
$n - 2t = 3$
Relay: phase i

$n = 7, t = 2$
$n - t = 5$
$n - 2t = 3$
Relay: phase $i + 1$

$n = 7, t = 2$
$n - t = 5$
$n - 2t = 3$
Relay: phase $i + 1$

$n = 7, t = 2$
$n - t = 5$
$n - 2t = 3$
Delaying accept arbitrarily long: $2k$

$n = 7, \ t = 2$
$n - t = 5$
$n - 2t = 3$
Delaying accept arbitrarily long: $2k + 1$

$n = 7$, $t = 2$
$n - t = 5$
$n - 2t = 3$
Arbitrarily later... phase i

$n = 7$, $t = 2$
$n - t = 5$
$n - 2t = 3$
Arbitrarily later… phase $i + 1$

\begin{align*}
 n &= 7, \quad t = 2 \\
 n - t &= 5 \\
 n - 2t &= 3
\end{align*}
Arbitrarily later… phase $i + 2$

$n = 7$, $t = 2$
$n - t = 5$
$n - 2t = 3$
Nonauthenticated Arbitrary Consensus

// m ∈ {0, 1}, nonloquacious protocol

process p:
 if (p == p₁) value = m;
 else value = 0;
 for r =1 to t + 1
 if (value == 1 and (p not broadcast in earlier round))
 broadcast(p, 1, r);
 if (in rounds r' ≤ r accepted (pₖ, 1, rₖ) from r distinct processes pₖ including the transmitter p₁)
 value = 1;
 decide value;
Other results from this approach

- Multivalued agreement
- Voting
- Asynchronous randomized agreement
- Clock synchronization