Total failure

If all the processes crash, then the processes that were the last to fail need to recover and run the termination protocol.

A last process to fail is one whose failure is not detected by another process.

Total failure (continued)

\[p_i \text{ fails-before } p_j \equiv p_j \text{ detects } p_i \text{'s failure} \]

- \[LPF \equiv \{ p_i : \forall p_j : \neg (p_i \text{ fails-before } p_j) \} \]
- rewording, \[p_i \in LPF \equiv \forall p_j : \neg (p_i \text{ fails-before } p_j) \]

\[UP_i \text{ is } \{ p_j : \neg (p_j \text{ fails-before } p_i) \} \]

- so, \[p_i \in LPF \equiv \forall p_j : p_i \in UP_j \] where \(UP_j \) is the value when \(p_j \) crashed.

\[\text{so, } LPF = \bigcap_{p_i} UP_i \]
Total failure (continued)
Total failure (continued)
Total failure (continued)
Total failure (continued)

\[LPF = \{ p_1, p_2 \} \]
Total failure (continued)

When p_i detects p_j's failure it:

- Removes p_j from UP_i
- Synchronously writes UP_i to stable storage

When p_i recovers:

- Let R_i be the processes p_i knows have recovered.
- When $R_i = \bigcap_{p_j \in R_i} UP_j$

then p_i knows that all of LPF have recovered.
Total failure (continued)
Total failure (continued)
Total failure (continued)

1. p_1, p_2, p_3
2. p_1, p_2, p_3
3. p_1, p_2, p_3, p_4
4. p_1, p_2, p_3
5. p_1, p_2, p_4
6. p_2
7. p_4
Total failure (continued)

p_1, p_2, p_3

p_1, p_2, p_3, p_4

p_1, p_2, p_3

p_1, p_2, p_4

p_1, p_2, p_3

p_1, p_2, p_4
A weakness in this protocol

- There are cases in which the processes in LPF have recovered but they don’t know it.

 … they collectively think some process p is up when in fact another process detected p's failure.
Total failure (continued)

p_1 and p_2 didn’t detect all of the failures that were detected. … in particular, p_1 and p_2 did not detect the failure of p_3.
Total failure (continued)

Consider *fails before* graph.

- Graph is a DAG.
- Sinks are elements of \(LPF \).
- All but upstream neighbors of \(p_i \) are \(UP_i \).
- Let \(|LPF| = u\).
 - If *fails before* is transitive, then graph consists of \(u \) cliques, each one having one sink.
 - Hence, if *fails before* is transitive, then \(LPF = \bigcap_{p_i \in P} UP_i \).
Total failure (continued)

Consider *fails before* graph.

- Graph is a DAG.
- Sinks are elements of LPF.
- All but upstream neighbors of p_i are UP_i.
- Let $|LPF| = u$.
 - If *fails before* is transitive, then graph consists of u cliques, each one having one sink.
 - Hence, if *fails before* is transitive, then $LPF = \bigcap_{p_i \in P} UP_i$.

Total failure (continued)

Consider *fails before* graph.

- Graph is a DAG.
- Sinks are elements of \(LPF \).
- All but upstream neighbors of \(p_i \) are \(UP_i \).
- Let \(|LPF| = u \).
 - If *fails before* is transitive, then graph consists of \(u \) cliques, each one having one sink.
 - Hence, if *fails before* is transitive, then \(LPF = \bigcap_{p_i \in P} UP_i \).
Making failure detection transitive I

\[(p_j \text{ detected } p_i \text{'s failure}) \land (p_k \text{ detected } p_j \text{'s failure}) \Rightarrow (p_k \text{ detected } p_i \text{'s failure})\]

This requires \(p_j\) to delay detecting \(p_i\)'s failure until it is sure that any processes that eventually detects \(p_j\)'s failure will first detect \(p_i\)'s failure.
Making failure detection transitive II

To do so, we build a failure detector on top of the existing failure detector.

- when p_j detects failure of p_i by existing failure detector, we say p_j suspects p_i
- “detects” will then refer to the transitive failure detector we are implementing.

Transitive Perfect Failure Detector Simulation
Making failure detection transitive III

- p_i maintains:
 - S_i: processes p_i suspects but not yet detected their failure.
 - D_i: processes whose failures p_i has already detected
 \[\text{... and so } UP_i \text{ is a synonym for } P - D_i. \]
 - $NeedF_i(p)$: $p_j \in NeedF_i(p)$ means p_i is waiting for p_j to say it suspects p.

- Suspicion is accurate: if p_j suspects p_i then p_i has crashed and so can never suspect p_j.
- Similarly, if p_j suspects p_i and then sends FAILED p_i to p_k, then p_i can never suspects p_k.
- In this sense, suspicion is transmitted in messages. Will use this idea in the proof but keep distinctions separate in protocol for clarity.

- Assume channels are FIFO.
- Correctness is with respect to what a process writes to stable storage.
Making failure detection transitive IV

when p_i suspects p_j:

if ($p_j \notin S_i \land p_j \notin D_i$)

\[
\forall p \in S_i: \text{Need}F_i(p) = \text{Need}F_i(p) - \{p_j\}
\]

$S_i = S_i \cup \{p_j\}$

send FAILED p_j to all in $P - S_i - D_i - \{p_i\}$

$\text{Need}F_i(p_j) = P - S_i - D_i - \{p_i\}$

when $\exists p$ in S_i: $\text{Need}F_i(p) = \emptyset$:

\[
\forall p \in S_i: \text{Need}F_i(p) = \emptyset:
\]

$S_i = S_i - \{p\}$

$D_i = D_i \cup \{p\}$

write $P - D_i$ to stable storage

when p_i receives FAILED p_j from p_k:

if ($p_j \notin S_i$)

\[
\forall p \in S_i: \text{Need}F_i(p) = \text{Need}F_i(p) - \{p_j\}
\]

$S_i = S_i \cup \{p_j\}$

send FAILED p_j to all in $P - S_i - D_i - \{p_i\}$

$\text{Need}F_i(p_j) = P - S_i - D_i - \{p_i, p_k\}$

else $\text{Need}F_i(p_j) = \text{Need}F_i(p) - \{p_k\}$
Making failure detection transitive V

Assume that p_j detects p_i's failure and p_k detects p_j's failure without having detected p_i's failure.

Since p_k suspected p_j, p_j never suspected p_k. Thus, before detecting p_i's failure, p_j received $\text{FAILED } p_i$ from p_k. And, when p_k sent $\text{FAILED } p_i$ to p_j, p_j was not in S_k while p_i was in S_k. That is, p_k suspected p_i before detecting p_j.

Since p_k detects p_j's failure without having detected p_i's failure, at some point p_k suspected both p_i and p_j: p_j and p_i were both in S_k.

Furthermore, there was at least one process p_x in $\text{NeedF}_k(p_i)$ and not in $\text{NeedF}_k(p_j)$, where $p_x \notin \{p_i, p_j, p_k\}$. The following argument applies to all such processes.

Given the two possibilities for p_x's role in each of the two failure detections that did occur, one of four cases happened:

1) p_j received $\text{FAILED } p_i$ from p_x and p_k received $\text{FAILED } p_j$ from p_x. p_k suspected p_j by the time it sent $\text{FAILED } p_j$ and so p_x sent $\text{FAILED } p_i$ before $\text{FAILED } p_j$. Given channels are FIFO, p_x was removed from $\text{NeedF}_k(p_j)$ before being removed from $\text{NeedF}_k(p_i)$. ☒

2) p_j suspected p_x and p_k received $\text{FAILED } p_j$ from p_x. This requires p_j to suspect p_x and p_x to suspect p_j. ☒

3) p_j received $\text{FAILED } p_i$ from p_x and p_k suspected p_x. As well as removing p_x from $\text{NeedF}_k(p_j)$, p_k's suspicion also removes p_x from $\text{NeedF}_k(p_i)$. From the protocol, both p_i and p_i would be moved to D_k before $P - D_k$ is written to stable storage. ☒

4) p_j suspected p_x and p_k suspected p_x. The argument for the previous case holds for this case as well. ☒
Weakness with this protocol…

☐ It delays detection.

- In some cases, using this protocol could make recovery slower.
- In other cases, using this protocol could make recovery faster.