Consensus with Broadcast Busses

System Model (I)

process fault: crash, arbitrary
channel fault: can drop incoming message
link fault: can drop messages between channel and process

n processes

$synchronized clocks, bounded message delivery, digital signatures$

R channels

R links
System Model (II)

\(\text{xcast}(v, i) \) sends \(v \) on link/channel \(i \)

- a null message \(\phi \) is generated by a timeout.
- all processes that receive a non-null message receive the same message.

\(\text{xcast}(v, S) \) for \(S \subseteq \{1, 2, \ldots, R\} \) is a parallel execution of
\(\text{xcast}(v, p_1) \parallel \text{xcast}(v, p_2) \parallel \ldots \parallel \text{xcast}(v, p_k) \)

where \(S = \{p_1, p_2, \ldots, p_k\} \). Parallel execution is done in no particular order and not done atomically.

\(\text{xcast}(v, *) \) is shorthand for \(\text{xcast}(v, \{1, 2, \ldots, R\}) \)
System Model (III)

A process is *properly connected* to a channel if its link to that channel is nonfaulty.

Let $P = \{p_1, p_2, \ldots p_n\}$ be the set of processes where p_1 is the transmitter.

V is the set of possible message values (excluding ϕ) and $v_0 \in V$ is the *default value*.
System Model (IV)

In a run, let
\[\pi = \text{the number of processes that are faulty} \]
\[0 \leq \pi \leq n \]
\[\psi = \text{the number of channels that are faulty} \]
\[\lambda = \text{the number of links that are faulty} \]
\[\psi \geq 0 \text{ and } \lambda \geq 0 \]
\[R > \lambda + \psi, \text{ which we show next...} \]
Being Connected

If $R > \lambda + \psi$ then there will always be a direct path connecting any pair of processes.

Remove ψ right nodes. Each node on the left has $R - \psi > \lambda$ edges incident.
Omission: 2 rounds

Round 1:
\[p_1: \text{xcast}(v, \ast); \]
\[\text{decide}(v); \]

Round 2:
\[p_i, i \neq 1: \]
\[\text{if} \ (|C^1_i| \neq 0) \ \text{then} \]
\[\text{xcast}(m_i, \{1,2, \ldots R\} - C^1_i); \]
\[\text{decide}(m_i); \]

After round 2:
\[p_i, i \text{ not yet decided:} \]
\[\text{if} \ (|C^2_i| \neq 0) \ \text{then} \ \text{decide}(m_i); \]
\[\text{else} \ \text{decide}(v_0); \]

\[C^r_i \text{ is set of channels over which } p_i \text{ receives non-null message } m_i \in V \text{ in round } r \]

Since there are only crash and omission failures, \(m_i \) is unique.
Omission: Example
Omission: Example
Omission: Example
Omission: Example
Omission: Proof (I)

If $\lambda + \pi \leq n$ then the protocol implements reliable broadcast.

Proof by case analysis:

1. Nonfaulty p_1.

 All nonfaulty p receive v in Round 1 because p_1 and p are connected.

 All nonfaulty p decide on v in Round 2
Omission: Proof (II)

2. Faulty p_1 that broadcasts no message over nonfaulty channels to which it is properly connected.

No value from p_1 is received by anyone.

By end of Round 2, all nonfaulty p decide on v_0.
Omission: Proof (III)

3. Faulty p_1 and some nonfaulty p_i receives initial broadcast.

Thus $m_i = v$.

Nonfaulty p_j will either receive in Round 1,

if p_j is well connected to channel over which p_i received v,

or in Round 2

because p_i and p_j are connected.
Omission: Proof (IV)

4. Faulty p_1 and only faulty processes receive v in Round 1

p_1 sent v on at least one channel because some processes received v.

Hence all $n - \pi$ nonfaulty processes have faulty links to that channel, so $\lambda \geq n - \pi$.

Winter Quarter 2009
CSE 223A: Consensus with Broadcast
Busses
Omission: Proof (V)

But by assumption $\lambda + \pi \leq n$ or $\lambda \leq n - \pi$ and so there can be no further link failures: only these $n - \pi$ links are faulty.

If any faulty process succeeds in sending ν on a channel that does not drop the message, then all nonfaulty p will receive and decide on ν in Round 2.

Else they decide on ν_0.

\[\text{Diagram of process}$}
Omission: Summary

\[0 \leq \lambda + \psi < R \text{ and } 0 \leq \lambda + \pi \leq n \]

Choose \(R \) based on probability of link failures and channel failures. Then choose \(n \) based on probability of process crashes.

Some boundary cases:

- when \(\pi = 0 \) then \(\lambda < n \) and \(\lambda + \psi < R \)
- when \(\lambda = 0 \) then \(\psi < R \) and \(\pi \leq n \)
- when \(\psi = 0 \) then \(\lambda < R \) and \(\lambda + \pi \leq n \)
Arbitrary Failures: 2 rounds

Requires $n > t + \pi + 2\lambda$ where t is the maximum possible number of process failures.
Still need $R > \lambda + \psi$.

Values sent are in $W = V \cup \{\phi, \bot\}$ where \bot denotes bad value.

S^k denotes all multisets of k elements drawn from S.

For example, $\{0, 1\}^2 = \{\{0, 0\}, \{0, 1\}, \{1, 1\}\}$
Arbitrary Failures (II)

Every nonfaulty process broadcasts at most one message over a channel in any single round.

$B^r_{i}(j) \in W^R$ is the multiset of messages p_i received from p_j in round r, one message per channel.

If p_i received more than one message per channel in Round r from p_j, then $B^r_{i}(j) = \{\bot\}^R$.

$B^r_{i}(j)$ is consistent in v if $B^r_{i}(j) \in \{\emptyset, v\}^R$ for some $v \in W$ and $v \neq \bot$.
Arbitrary Failures (III)

Some useful functions:

\(\sigma: W^R \rightarrow V: v \) if parameter is consistent in \(v \); \(v_0 \) otherwise.

\(\gamma^z: W^n \rightarrow V: v \) if \(v \) is most frequent non-\(\phi \) value in parameter and there are at least \(z \) of them; \(v_0 \) otherwise.

... defined only if \(2z > n \).
Arbitrary Failures: Protocol

Round 1:

\[p_1 : \text{xcast}(v, \ast); \]

Round 2:

\[p_i : \quad m_i = \sigma(B_1^1(1)); \]
\[\text{xcast}(m_i, \ast); \]

After round 2:

\[p_i : \quad M_i = \{ \forall j : 1 \leq j \leq n : \sigma(B_2^1(j)) \}; \]
\[\text{decide on } \gamma^{t+1}(M_i) \]
Arbitrary Failures: Example

\[t = \pi = 1, \lambda = 1, \psi = 2 \]
Arbitrary Failures: Example

\[t = \pi = 1, \lambda = 1, \psi = 2 \]

Round 1
Arbitrary Failures: Example

\[t = \pi = 1, \lambda = 1, \psi = 2 \]

Round 2
Arbitrary Failures: Example

\[t = \pi = 1, \lambda = 1, \psi = 2 \]

Round 2
Arbitrary Failures: Example

\[t = \pi = 1, \lambda = 1, \psi = 2 \]

After round 2
Arbitrary Failures: Proof (I)

Sending process \(p_j \):

- *is overtly malicious* when its multiset of message values as observed on channels is not consistent;

 - \(p_i \) is a *witness* if \(B^r_i(j) \) is not consistent in \(\nu \) for some \(\nu \).
Arbitrary Failures: Overtly Malicious
Arbitrary Failures: Proof (II)

Sending process p_j:

- *exhibits overt omission failure* if it is not overtly malicious and broadcasts null messages over at least one channel to which it is well-connected;
 - p_i is a witness if $B^r_i(j) = \{\phi\}^R$.
 - p_j, crashing subsequently exhibits overt omission failure.
Arbitrary Failures: Exhibits Overt Omission Failure
Arbitrary Failures: Proof (III)

Sending process p_j:

- *is correct* if it does neither.
Arbitrary Failures: Proof (IV)

Lemma: Let k be the number of witnesses to an overt failure of p_1 by the end of Round 1 (not counting the transmitter).
Arbitrary Failures: Proof (V)

Overt omission: $0 \leq k \leq \lambda$ or $k = n - 1$

Let x be the number of nonfaulty channels to which p_1 is properly connected and to which p_1 sends non-null messages: $0 \leq x \leq R$.

If $x = 0$ then all of the remaining $n - 1$ processes witness the failure.

If $x > 0$ then each process that witnesses the failure has x faulty links.

Given k witnesses, there were $kx \leq \lambda$ link failures.

kx may be less than λ because there may be subsequent link failures.

So, k is bounded from above by $[\lambda/x]$, and thus is in the range from 0 to λ.
Arbitrary Failures: Proof (VI)

Overtly malicious failure: \(n - \lambda - 1 \leq k \leq n - 1 \)

\(p_1 \) failed by successfully broadcasting two different non-null messages over two channels.

\(p_j \) will witness unless it is not well-connected to at least one of these channels. At most \(\lambda \) processes can be not well-connected in this manner.

Thus, between \(n - \lambda - 1 \) and \(n - 1 \) processes will witness \(p_1 \)’s overtly malicious failure.
Arbitrary Failures: Proof (VII)

Proof of correctness when $n > t + \pi + 2\lambda$ by case analysis.

1. Nonfaulty p_1.

 By end of Round 1 and because all processes are connected, all $B^1_i(1)$ are consistent in ν.

 Thus all $m_i = \nu$ and are sent in Round 2 by nonfaulty processes p_i.

 After Round 2, at all nonfaulty processes p_i, at least $n - \pi$ occurrences of ν are in in M_i along with at most π occurrences of some other value or \bot.

 Since $n > t + \pi + 2\lambda$ and $t \geq \pi$, $n > 2\pi$ and so $n - \pi > \pi$. Thus, the ν values dominate. And, $n - \pi > t + 2\lambda \geq t$. So $n - \pi \geq t + 1$.

 Thus $\gamma^{t+1}(M_i)$ computes ν.
Arbitrary Failures: Proof (VIII)

2. Overt omission failure by p_1.
 There will be $k \in \{0, 1, \ldots, \lambda, n - 1\}$ witnesses.
 If $k = n - 1$ then at least $n - \pi$ broadcast ϕ in Round 2.
 As in Case 1, the nonfaulty processes decide on v_0.
 If $k \leq \lambda$, then at least $n - \pi - k - 1$ nonfaulty processes do not
 witness the failure. These, along with p_1, set $m_i = \nu$ and send
 ν-consistent messages in Round 2.
 All nonfaulty processes will have at least $n - \pi - k$ ν-values in M_i.
 $n > t + \pi + 2\lambda$ or $n - \pi - k > t + (2\lambda - k) \geq t$
 or $n - \pi - k > t$
 Thus $\gamma^{t+1}(M_i)$ computes ν.

Arbitrary Failures: Proof (IX)

3. Overtly malicious p_1.

 Number of witnesses $k \geq n - \lambda - 1$.

 At least $k - (\pi - 1)$ processes send v_0-values in Round 2.

 All nonfaulty processes p_i have at least $k - \pi + 1$ v_0-values in M_i.

 $k - \pi + 1 \geq n - \lambda - \pi$

 but $n > t + \pi + 2\lambda$ or $n - \lambda - \pi \geq t + \lambda + 1 \geq t + 1$

 So $k - \pi + 1 \geq t + 1$

 Thus $\gamma^{t+1}(M_i)$ computes v_0.
Arbitrary Failures: Summary

\[0 \leq \lambda + \psi < R \text{ and } 0 \leq t + \pi + 2\lambda < n \]

More simply, \[n \geq 2(t + \lambda) + 1 \]

Compare with \[n \geq t + \lambda \] for send omission failure model.