Today

- The *consensus* problem in synchronous systems
 - Crash.
 - Byzantine.
 - Some lower bounds.
 - One value of cryptography.
Consensus

Reliable broadcast: There is a transmitter p_1 and a set of receivers $p_2, p_3, \ldots p_n$. p_1 has an initial value v and each p_i computes a decision value d_i.

RB1: If p_1 is nonfaulty, then for all nonfaulty p_i: $d_i = v$.
RB2: If p_1 is faulty, then for all nonfaulty p_i and p_j: $d_i = d_j$.

Uniformity: For any two p_i and p_j that decide: $d_i = d_j$.
Other versions of Consensus

Each process has an *input bit* x_i and an *output bit* y_i.
The protocol terminates with each nonfaulty processor agreeing on y_i: $\exists y \ \forall i: p_i$ not faulty: $y_i = y$ \hspace{1cm} (RB2)

strong: If $\forall i: x_i = x$ then $y = x$

weak: If $\forall i: x_i = x$ then $y = x$ provided there are no failures in the run.

very weak: For $y_s \in \{0, 1\}$ $\exists \{x_1, x_2, ..., x_n\}$ and a run in which $y = y_s$.
System model

We assume that:

- Clocks are approximately synchronized.
- Messages have an upper bound on time from sending to delivery.

These assumptions allow us to build the protocols in a *round-based* approach.

- In a round each process can receive messages sent to it in the previous round and subsequently send messages.
A protocol for crash failures

\begin{itemize}
 \item p_1 round 0:
 \begin{itemize}
 \item p_1 sends v to all
 \item $d_1 = v$
 \item \textbf{halt}
 \end{itemize}

 \item p_i round a: $1 \leq a \leq t$:
 \begin{itemize}
 \item receive messages sent in round $a - 1$
 \item if received a message, let x be the value in some message
 \begin{itemize}
 \item $d_i = x$
 \item send x to all
 \item \textbf{halt}
 \end{itemize}
 \end{itemize}

 \item p_i round $t + 1$:
 \begin{itemize}
 \item receive message sent to it in round t
 \item if received a message, let x be the value in some message
 \begin{itemize}
 \item $d_i = x$
 \item else $d_i = 0$
 \item \textbf{halt}
 \end{itemize}
 \end{itemize}
\end{itemize}
Informal proof of crash failure protocol

RB1 holds:

- If p_1 is not faulty, then in round 0 it sends v to all processes.
- All processes that have not crashed deliver v in round 1, set d_i to v, and forward v to all.

... hence, all processes that have not crashed by the end of round 1 set d_i to v.

Informal proof of crash failure protocol (continued)

RB2 holds as long as \(n > t \):

- A value received in round \(a \) has been sent by a chain of \(a \) processes.
- If any nonfaulty process received a value \(x \) in round \(a \leq t \), then all processes that have not yet crashed by the end of round \(a + 1 \) will receive the value \(x \).
- If a process receives a value \(x \) sent in round \(t + 1 \), then at least one process in the chain is nonfaulty.

… is this uniform?
What about other failures?

- arbitrary (Byzantine)
- general omission
- send omission
- receive omission
- crash
- crash + link
- failstop

The diagram shows a hierarchy of failure modes, with weaker failures leading to stronger ones.
Arbitrary, $n = 3, t = 0$
Arbitrary, \(n = 3, t = 0 \)
Arbitrary, \(n = 3, \ t = 0 \)
Arbitrary, $n > 3t$

Suppose a solution exists for $n \leq 3t$
(e.g., $t=4$, $n=12$)
$n > 3t$

Suppose a solution exists for $n \leq 3t$
(e.g., $t=4$, $n=12$)
\[n > 3t \]

Suppose a solution exists for \(n \leq 3t \)
(e.g., \(t = 4, n = 12 \))
Arbitrary, $n = 4$, $t = 1$

Not receiving a value is equivalent to receiving 0.

- Round 0: p_1 sends v to all
- Round 1: p_i receives value sent in round 0 and forwards to all.
- Round 2: p_i receives value sent in round 0.

Each process has received three values. Set d_i to the majority value.
Arbitrary, $n = 4$, $t = 1$

p_1 can't be faulty, so decide 0
Arbitrary, $n = 4$, $t = 1$

p_1 is faulty, so p_2, p_3, p_4 are not faulty.
All decide 1.
Arbitrary, $n = 4$, $t = 1$

If p_1 is faulty, then p_2, p_3, p_4 are not faulty. Each gets \{0, 0, 1\} and decides 0.

If p_1 is not faulty, then p_2 is faulty. Each gets \{0, 0, x\} and decides 0.
Indistinguishability

\[\text{attack} \quad \text{retreat} \quad \text{attack} \quad \text{retreat} \]

\[\text{attack} \quad \text{retreat} \quad \text{attack} \quad \text{retreat} \]

can distinguish between these two cases using *digital signatures*.
Digital signatures

With public key cryptosystems, there are two keys: a publicly known key K_E and a privately known key K_D.

- $[M]K_E$ is a message that can be encrypted by anyone and decrypted only by one.
- $[M]K_D$ is a message that can be encrypted only by one and decrypted by anyone.
A protocol for arbitrary failures

vals_i = \{ \}

p_1 round 0:
p_1 signs v and sends to all

p_i round a: 1 \leq a \leq t:
receive messages sent in round a - 1
while (there is a received valid message m that contains x \not\in val_i)
val_i = val_i \cup \{ x \}
sign and forward m to all

p_i round t + 1:
receive message sent to it in round t
while (there is a received valid message m that contains x \notin val_i) val_i = val_i \cup \{ x \}
if (|val_i| \neq 1) d_i = 0
else d_i = value in val_i

m is valid if, when received in round a, m has a distinct signatures, the first of which is by p_1.
Informal Proof

Much like the previous protocol.
Bounds on number of rounds

For any failure model, there is a run of $t + 1$ rounds.
Early stopping consensus, crash failures

An *early stopping* consensus protocol has *some* processes decide in $f + 2$ rounds where $f \leq t$ is the actual number of failures that occur in the run.

The idea is to have each process send a message in each run as a kind of *heartbeat*. When failures stop for long enough, then consensus is reached.
Early-stopping, crash failures

Each process p_i maintains UP_i which is initially all of the processes. If in round a, p_i expects to receive a message (sent in round $a - 1$) by p_j but does not receive one, then p_i removes p_j from UP_i. Each process sends a message in each (but the first) round. The message will be:

- A value, 0 or 1 if it has received that value previously.
- \bot default value.
- \emptyset heartbeat, sent when didn’t receive a value in round 1, or in later rounds the process can’t decide.
Early-stopping, crash failures

round 0: p_1 sends v to all

round $a \leq t$, each process p_i that has not yet halted:
- receive messages sent in round $a - 1$
 - if received $x \in \{0, 1, \bot\}$ \{ $d_i = x$; send x to all; \textbf{halt} \}
 - else if ($a > 1$)
 - if (have received \emptyset from all $p_j \in UP_i$) \{ $d_i = \bot$; send \bot to all; \textbf{halt} \}
 - else $UP_i = UP_i \setminus \{p_j: p_j \in UP_i \text{ and } p_i \text{ did not receive a message from } p_j\}$
 - send \emptyset to all

round $t + 1$, each process p_i that has not yet halted:
- receive messages sent in round t
 - if received $x \in \{0, 1, \bot\}$ $d_i = x$
 - else $d_i = \bot$