

Rat’s Life Competition Entry

Thavidu Ranatunga
ANU-UCSD EAP Exchange Student

Department of Computer Science
University of California, San Diego

tranatun@ucsd.edu

Abstract

This report presents an entry into the Rat’s Life robotics competition. The
competition pits pairs of robots in a maze with the objective of out lasting
the other robot. The task is measured by an energy level which may be
recharged from sources within in and unknown maze configuration. The
robots are equipped with limited vision and distance sensors. We discuss
the methods and strategies involved in an entry; covering the obstacles and
various aspects that are required including motor control, mapping, and
vision and distance-based sensing.

1 Introduct ion

1 . 1 Compe t i t i on

The objective of the project is to create a competitive entry into the Rats Life competition
running at

http://www.ratslife.org

The competition is defined in both simulated and real platforms however we will be
referring to the simulated platform hence forth.

The competition runs matches of two robots in a random maze configuration containing
power sources (‘Feeders’), walls, landmarks and open spaces. The robots have a simulated
‘energy level’ which depletes over time and the robots must recharge at power sources in
order to stay active. ‘Feeders’ require time to recharge once they have distributed their
allocated power. The objective of the competition is to outlast the opposing robot.

In the current state of the competition, there are only 6 maze configurations being selected
from, however there are intended to be more.

1 . 2 Rob ot De sc r i pti on

The robot is designed to reflect the e-puck educational robot (www.e-puck.org) and as such
has 3 types of sensors:

 1 Camera

 8 Distance Sensors

 1 Accelerometer

http://www.ratslife.org/
http://www.e-puck.org/

 2 Wheel encoders

The camera is mounted on the front of the robot, centered near its top. It can only output a
resolution of 52x39 and returns an RGB colour format.

The distance sensors are IR-based and only have a specified range of 4cm. This represents
roughly one tile on a standard map. They are positioned around the circumference of the
robot.

The wheel encoders measure the turn of the wheels not necessarily the actual movement of
the robot.

The accelerometer returns the acceleration in the x, y and z axis directions in units of m/s2.

The robot also has 2 outputs: 10 LED lights positioned around the circumference of the robot
and 2 wheels. The 2 wheels are positioned at the base of the robot such that turning on the
spot is possible.

1 . 3 Syste m Se tup

We used Webots version 6.0.1 for the simulating the robot and its environment. The original
competition ran in Webots 5.8.0. The code for the robot controllers are written in Java 1.6
update 11.

2 Methods & Strategies

2 . 1 M ove me nt

The robot moves based on how much power is given to the wheels. Basic motor control is
required to turn and move the robot into various positions. Turning can be achieved with
applying an opposite polarity to the power of each wheel. Movement back and forth is done
by having the same polarity on the power of each wheel. This is illustrated in Figure 1. The
movements of the wheels are measured by the wheel encoders; however it only measures the
turn of the wheels as opposed to actual movement of the robot. As such this leads to
inconsistencies and is not always able to be a good measure of actual motion. To reduce this
in post-movement it is possible to use the accelerometer to slightly enhance this
functionality but this returns the acceleration values and may not be fine enough to be very
useful. Alternatively it is possible to use the distance sensors pre-movement to test that there
aren’t any obstacles in the direction of movement such that for example the robot doesn’t try
to push against a wall (which would increase the wheel encoder amount but not actually
move the robot).

Figure 1. Basic Motor Control

All sensors are only updated every cycle of the controller’s time step and thus it is not
possible to stop moving at an exact measurement of the wheel encoders. However this can be
compensated for and the robot can be re-aligned by other techniques such as using the
camera for a vision-based measurement. There are black painted crosses at constant intervals
on the ground to form tiles. These can be used to aid in measuring actual motion of the
robot.

On a larger perspective of movement, we consider two ways of moving through the maze:
fluid motion and block motion. The difference is illustrated in Figure 2.

In block motion the robot only moves in square tiles or blocks, as designated by the black
painted crosses on the maze floor. All robots start in the middle of one such square in all
maze configurations. This method is considerably easier to create and maintain a map with
as it is possible to just store and reference it as an array or table. The drawback of the
method is due to the inaccuracies of movement described above. It is difficult to get the
robot to move in discrete squares and as such it needs to be compensated for and realigned
over time.

In fluid motion the robot moves fluidly without any restrictions. This is faster as there is
little to no stopping whilst travelling, and movement isn’t restricted to moving horizontally
and vertically. However this inherently makes it much harder for mapping and localization,
and techniques such as dead reckoning are required to be used. The problems regarding
alignment within the tiles no longer exists, however the inaccuracies with the wheel
encoders still exist. This can have less impact here than in block motion, as it is more easier
compensated for, by having an acceptable region of error.

Both methods of motion are viable with different strategies, but we decided to use block
motion as it we estimated it would have a better return on interest for the amount of time
available for this project.

Figure 2. Top: Block Motion, Bottom: Fluid Motion

2 . 2 Di stanc e Se nsor s

The distance sensors on the robot are IR-based and short range, with the specification listing
it as being about 4 cm. In terms of actual maze tiles however, the robot is at best able to only
detect the 4 walls on sides of the square. The e-puck robot is circular and the sensors are
positioned along its circumference. During normal operation without obstacles nearby the
sensors output a value somewhere between 0 and 80, this value changes constantly. At
closest the value ranges into the 3000s and at worst the lowest value you can hope to get
with a wall nearby is around 100. Figure 3 shows an example reading of sensors from the e-
puck; the distance sensors are in blue.

Figure 3. Example sensor reading from e-puck

The sensors can be used to detect obstacles, and fluid motion is especially dependant on the
distance sensors for traversing the maze without getting stuck. For both fluid and block
motion, the sensors are essential in the case that the opposing e-puck robot is in your robots
path. If the robot doesn’t stop when an obstacle is detected then the wheel encoders will
continue to increase but the robot would not move.

When travelling with block motion the distance sensors can be very useful for mapping,
however if the robot varies out of alignment too much, they are become horribly inaccurate.
In order to compensate for this, a combination with vision based techniques using the on-
board camera is effective.

2 . 3 Vi s i on

The e-puck robot contains a small camera capable of outputting at 52x39. The resolution is
rather small so it is difficult to do complex computer vision techniques with it. However it
still provides some very useful information and the small size actually allows for really fast
calculations.

The top line of the walls can be used in contrast with the background of the simulation to
obtain an estimate of how far away a wall is from the robot. Firstly the vertical line directly
in the center of the image can be used to detect how far away the closest wall directly in
front of the robot is. Using a single vertical scanline and detecting at how many pixels from
the top the grey level changes from below 100 to above 150 will tell you the distance. It is
noted however that the e-puck robot seems to bob up and down whilst hovering on one spot,
and as such there is sometimes a frame which has a half grey pixel between 100 and 150;
this offsets the recorded distance values by 1. After this first wall it can then be determined
how many walls to the left and right of the center wall we can obtain information about. We
use more vertical scanlines starting from the outside and working towards the center to
determine the distance of any other discernable nearby walls. The Figure 4 below illustrates
this flow of detection.

Figure 4. Vision based wall distance detection

Another use of the camera is to re-align the robot after traveling. A frame can be examined
and split into portions as shown below in Figure 5. The amount of dark (non-grey) pixels
that are visible from the painted crosses in the image can be counted and then be used to
determine if there is imbalance to one side or the other; ie. whether the robot is sitting too
far to the left or the right in its square). The left and right speeds for the wheels can be
adjusted during the next movement to compensate for this.

Figure 5. Divisions for re-alignment

Finally, probably the most important use of the camera is to search for an active feeder.
Feeders emit a bright red light when active (Shown in Figure 6), and turn it off returning to
its dull red paint when it is recharging. The simple sample robot that comes with the Webots
package uses a simple but efficient pixel scan of the vertically-middle 3rd of the image to
search for an arbitrary number of bright pixels.

Figure 6. An Active Feeder

2 . 4 M appi ng

Maintaining and using a dynamic map of the maze is essential for the any robot to be
successful. Since we chose to use block motion for the robot, it is relatively easy to map
using a multi-dimensional array. The existing maze configurations all have a size of 10x10
tiles total, with walls being in-between tiles instead of occupying one square. An example
maze is shown in Figure 7. The starting location is chosen at random from a given set of
coordinates for a maze and this set can contain coordinates from anywhere within the maze.
Since the initial environment is unknown to the robot, it must allocate an area double the
size of mazes (10x10 currently) to be able to start at any tile in the maze. It can then go to
the edge of the maze in any direction from any start tile and not be out of bounds.

The map is built from information gathered from the vision and distance sensors at each step
taken through the maze. As described in the vision section the robot can estimate the
distance of certain walls in certain conditions and be able to contribute to the map. The
distance sensor can provide information regarding the immediate surroundings of the current
square. Combining this information it is possible to build a map to work with.

Currently the contest only has 6 maze configurations and as such it is possible to integrate
the known maze configurations as background information to the robot prior to competing.
This is better than a blank map, and once identified as the correct configuration, is a huge
source of information that greatly aides the strategy of the robot. The solution however is not
dependant on this information being available, and is designed to work in a blank map
situation too. In that case a standard graph search algorithm such as a modified breadth first
search can explore the maze by moving to the closest unexplored square. Once more and
more information is known a standard graph search algorithm, A*, is used to travel to the
nearest feeder, recharge, and continue exploring again. An alternative to the closest
unexplored square is to use A* to path to the center of the most unexplored area of the maze.
The robot can keep track of the time since the feeder was last deactivated and travel in
between to compensate. This is discussed more in the strategy section.

Figure 7. Example maze configuration. Source: www.ratslife.org

2 . 5 Str ate gy

In order to be able to be competitive, the robot needs to be able to

 Create and maintain a dynamic map of its surrounding environment

 Identify ‘feeder’ power sources and recognize whether they are an active or inactive
state

 Use the gathered information to traverse the maze efficiently and without crashing
into walls

 Manage its power supply so as to stay active as long as possible

Possible strategies for entries to Rat’s Life vary from random/luck-based to more systematic
approaches, and both have their benefits depending on which maze configuration arises.
Thus a balance needs to be sought between the two, and a good strategy is possibly one that
can switch or adapt based on the observed state of the maze as it happens. Several of the
strategies that appeared in the original Rat’s Life competition as it evolved are described in
[1].

Navigation:

Even though mapping wherever you move is essential, choosing where to move isn’t so
clear. If the map is preloaded into the robot as described in the previous section, then
movement is simply just navigating to the nearest feeder. However when the environment is
being discovered as the robot moves, it has to decide on a method to explore. One such
method is the simple but very efficient right-hand method, where you simply follow the first
wall on your right hand side (or left) and thus map out a lot of the walls in the maze (the
exception being islands of walls separate from the rest). You could also go to the nearest
unknown square on the map you are generating or navigate to the area of most unexplored
squares. You can always just travel randomly too.

Feeders:

Feeders, being the most important part of the maze towards our objective, form an important
point in strategy. Feeders deactivate once used and take some time to recharge. Each rat has
2 batteries (2 lives?) which drain sequentially, each initially containing an arbitrary a level
of ‘100’. The feeder recharges the active battery to full but if a battery has been drained
already then it is unaffected. One popular strategy noticed in other competitors (see results)
was to sit in front of a feeder, just out of its charging range but blocking all other rats from
reaching it. Then when the current battery is about to run out, it will move forward slightly
and charge it, before moving onto another feeder. This makes the most efficient use of the
feeder since your battery will be full while you travel to find the next feeder, and keeps the
rat alive for longer (taking the most charge out of the feeder). However the time for a feeder
to recharge is faster than the time it takes for you to lose one battery, so at most you can get
2 charges from sitting at one feeder the entire match.

3 Result s

3 . 1 Sampl e Robot

The sample robot controller/rat that comes with the Webots package is a simple robot that
consists of a 2 part strategy:

 Use distance sensors to avoid obstacles; it multiplies the distance sensor readings
with a set of weights so as to slow down wheel power respectively and avoid. If an
object is directly ahead, it will randomly choose to turn left or right.

 Identifying feeders; Scan for a red light in the middle section of the screen, if found
it adjusts wheel power to try and make the average amount of red pixels to be in the
center of the screen.

Other than the above, its movement is fairly random. Hence in this section we are using the
remaining battery life (of the winner) when we win as a metric for the effectiveness of the
bot.

The robots that I used were the following:

tMaze - A robot with the 6 mazes preloaded into memory, it spins around
identifying which maze it is in at the start, then uses a search
algorithm to navigate to the nearest feeder. After deactivating, it
finds a new feeder.

tMaze, Sit - Same as tMaze, however once it reaches a feeder it sits there and
waits for it to recharge.

tNoMaze, Random - A robot without the mazes preloaded, it uses its camera and
distance sensors to detect walls, map and navigate its environment.
Its movement is random until it finds a feeder, at which point it
will charge from it and record its location.

tNoMaze, Nearest - Same as tNoMaze,Random, except that it travels to the nearest
unexplored square each time.

Some test matches were run against the sample bot on Mazes1 & 2 which have a balanced
amount of open space and tight corridors. 5 examples matches per pair were done and the
results were averaged, as shown in Table 1.

Table 1. Results against the sample bot

Maze Bot0 Bot1 Winner Avg Remaining
Battery

1 tMaze Sample tMaze 50

1 tMaze,Sit Sample tMaze,Sit 40

1 tNoMaze,Random Sample Draw -

1 tNoMaze,Nearest Sample Draw -

2 tMaze Sample tMaze 60

2 tMaze,Sit Sample tMaze,Sit 50

2 tNoMaze,Random Sample Draw -

2 tNoMaze,Nearest Sample Draw -

Unfortunately even with all the attempts to rectify going out of alignment, the robot bugs
and gets stuck incredibly often. At first it is okay but usually about halfway between finding
the first feeder and travelling to the second one, it has gotten too out of alignment and gets
stuck on a wall, or maps itself incorrectly.

Because of this failure, sitting at the first feeder guaranteed it lived for 2 lives, but no more
than that (as the feeders recharge slower than your battery drains). However constantly
moving to a new feeder runs the risk of it getting stuck but with the prospect of being able to
live indefinitely.

3 . 2 Pr ovi ng Gr ounds O f f i c i a l Ladde r Re sul t

There is an unofficial contest for the out-of-season period (of the official contest) at

http://www.theprovinggrounds.net/ratslife/

They run one match a day in a ladder system such that the lowest person fights the next
person above them and so on. Thus each rat gets one more match for every win, but only one
match when you lose. A rat similar to tMaze in the previous section was submitted here for 2
days as of writing, but unfortunately the first day’s rounds weren’t met properly and the
second day was the rat lost terribly and thus only faced one match. The main reason for the
loss is that on the 3 later maps (Mazes 3-6), the configuration has many tight corridors and
not very much room to move. This also makes identifying the mazes difficult in close
quarters and there was a bug unfortunately rendering it unable to do so.

http://www.theprovinggrounds.net/ratslife/

3 . 3 Pr ovi ng Gr ounds Compe t i tor s

Thanks to Anthony Morse of the provinggrounds.com we were able to obtain 4 anonymous
competitor’s entries to test against. The competitors were matched similar to section 3.1 and
the results are shown in Table 2. This time average battery remaining wasn’t used a metric
since all competitors are intelligent enough to find feeders fairly regularly and as such the
battery was always being refilled. Each match was run 4 times instead and win rate is listed
instead. A description of each bot by observation is as follows:

Competitor A Uses the left hand wall method, follows each wall very tight and moves
very fast. Waits at feeder once found for battery to drain and blocks
competitors from reaching it.

Competitor B Similar to A however its wall following isn’t as efficient and it gets
confused going in loops occasionally, or gets stuck in wall corners.

Competitor C Also sues the left hand wall method, but is incredibly fast and due to its
speed and the relatively close starting positions- always seems to rush
forward and confuse the opposing robot as a wall, running around it in a
circle continuously! It then panics when less than 30 battery and darts in a
random direction, usually finding a real wall, and then winning.

Competitor D Similar to A. However not as fast, and doesn’t wait quite as long in front of
a feeder before using it.

Maze Bot0 Bot1 Winner Win Rate

1 A tMaze A 100%

1 B tMaze tMaze 75%

1 C tMaze C 100%

1 D tMaze D 100%

3 A tMaze A 75%

3 B tMaze tMaze 75%

3 C tMaze C 100%

3 D tMaze D 75%

All four of the competitors were incredibly fast as they were only checking for a feeder and
following a wall. Other than that they each gave attention to their battery level and did a
random dart when it had gotten low without them spotting a feeder. Their strategy was
simple and effective. The block motion I used was terribly ineffective as it often caused the
robot to get bugged out over time since it had lost its alignment over time. It was also a bit
slower, and the opposing robots sometimes beat it to reaching a feeder when it was almost
there. Opposing robots also tended to block the feeders quite often preventing my robot from
getting there (as it was slower). It was unclear which of the other robots mapped and which
just flowed from wall to wall.

Maze 3 faired better for me as there were wall islands in places and a lot more convenient
arrangements of walls in my favour. The competitors would sometimes get stuck in loops.

Finally, since starting positions of the 2 rats are often very close to each other. Competitors
A and C ran so fast that they confused my robot as a wall initially, and ran circles around me
in a loop until both battery levels were less than 30! This was horrible as (though hilarious to
watch) as both robots were stuck. My robot couldn’t identify its surrounding maze as
whenever it turned it would always see the competitor and take bad readings. The competitor
would just run around and around until it reached its panic level, at which point it would
leave and win on its second battery, whilst mine was too confused to continue.

4 Future

If there was more time I would like to have attempted to see what may come of using fluid
motion in a lot more detail instead of blocks. It would require a whole new approach as the
strategies and techniques would be considerably different.

Block motion was a large part of the downfall of my robot as it really is too difficult to keep
in alignment. Even if you can fix it without outside interference, another robot can nudge
you or block your way and mess with your alignment (even if by accident, in circles…).

In the future of the actual competition there has been announced that more contrast in the
colour scheme will be given so as to aid vision based solutions. There is also more planned
changes to make the contest more interesting however they have not released details on what
those might be. The second edition of the contest is set to happen sometime in the first half
of 2009.

Re fer e nce s

 [1] Michel, O., Rohrer, F. (2008) The Rat’s Life Benchmark: Competing Cognitive Robots. European
Robotics Symposium

