Equivalence Between DFAs and NFAs

Every DFA is (a special case of) an NFA, hence $DFA-s \subseteq NFA-s$, but $NFA-s \not\subseteq DFA-s$.

Nevertheless, these classes are *Equivalent*.

This means that for any NFA N there exists a DFA D satisfying: $L(D) = L(N)$.

Equivalence Between DFAs and NFAs

Thus, to prove equivalence of the classes we prove:

Theorem: For every NFA N there exists a DFA D satisfying $L(D) = L(N)$.

Proof Idea: The proof is *Constructive:* We assume that we know N, and construct a simulating DFA, D.

Roadmap for Lecture

In this lecture we:

- Prove that NFA-s and DFA-s are *equivalent*.
- Present the three regular operations.
- Prove that each of the regular operations preserves regularity.
Proof

Let $N = (Q, \Sigma, \delta, q_0, F)$ recognizing some language A. The state set of the simulating DFA D, should reflect the fact that at each step of the computation, N may occupy several states.

Thus we define the state set of D as $P(Q)$, the power-set of the state set of N.

Proof (cont.)

Our next task is to define D's transition function, δ':

For any $R \in Q'$ and $a \in \Sigma$ define

$$\delta'(R, a) = \{ q \in Q | q \in \delta(r, a) \text{ for some } r \in R \}$$

If R is a state of M, then it is a set of states of N.

When M in state R processes an input symbol a, M goes to the set of states to which N will go in any of the branches of its computation.

Proof (cont.)

An alternative way to write the definition of M's transition function, δ' is:

For any $R \in Q'$ and $a \in \Sigma$ define

$$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$$

And the explanation is just the same.

Note: if $\bigcup_{r \in R} \delta(r, a) = \phi$, then $\delta'(R, a) = \phi$

Which is OK since $\phi \in P(Q)$.

Proof (cont.)

Let $N = (Q, \Sigma, \delta, q_0, F)$ recognizing some language A. First we assume that N has no ε - transitions.

Define $D = (Q', \Sigma, \delta', q_0', F)$ where $Q' = P(Q)$.
The initial state of \(M \) is:

\[q_0' = \{ q_0 \} . \]

Finally, the final state of \(M \) is:

\[F' = \{ R \in Q' | R \text{ contains a finite state of } N \} \]

Since \(D \) accepts if \(N \) reaches at least one accepting state.

The reader can verify for her/him self that \(D \) indeed simulates \(N \).

It remains to consider \(\varepsilon \) - transitions. For any state \(R \) of \(D \) define \(E(R) \) to be the collection of states of \(R \) unified with the states reachable from \(R \) by \(\varepsilon \)- transitions.

The old definition of \(\delta'(R, a) \) is:

\[\delta'(R, a) = \{ q \in \delta(R, a) | q \text{ for some } r \in R \} \]

And the new definition is:

\[\delta'(R, a) = \{ q \in \delta(R, a) | q \in E(\delta(R, a)) \text{ for some } r \in R \} \]

In addition, we have to change the definition of \(q_0' \), the initial state of \(M \). The previous definition, \(q_0' = \{ q_0 \} \), is replaced with \(q_0' = E(\{ q_0 \}) \).

Once again the reader can verify that the new definition of \(D \) satisfies all requirements.

A language \(L \) is regular if and only if there exists an NFA recognizing \(L \).
The Regular Operations

Let A and B be 2 regular languages above the same alphabet, Σ. We define the 3 Regular Operations:

- **Union**: $A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$.
- **Concatenation**: $A \circ B = \{ xy \mid x \in A \text{ and } y \in B \}$.
- **Star**: $A^* = \{ x_1, x_2, \ldots, x_k \mid k \geq 0 \text{ and } x_k \in A \}$.

Elaboration

- **Union** is straightforward.
- **Concatenation** is the operation in which each word in A is concatenated with every word in B.
- **Star** is a unary operation in which each word in A is concatenated with every other word in A and this happens any finite number of times.

The Regular Operations - Examples

- $A = \{ \text{good, bad} \}$
 $B = \{ \text{girl, boy} \}$
- $A \cup B = \{ \text{good, bad, girl, boy} \}$
- $A \circ B = \{ \text{goodgirl, goodboy, badgirl, badboy} \}$
- $A^* = \{ \epsilon, \text{good, bad, goodgood, goodbad,} \}$
 \[\text{goodgoodgoodbad, badbadgoodbad,} \ldots \]

Motivation for Nondeterminism

We want to use the regular operations for a systematic construction of all regular expressions.

Given a two DFA-s, their product DFA can recognizes their union, but we do not know how to construct a DFA recognizing either concatenation or star.

This can be proved by using NFA-s.
Theorem

The class of Regular languages is **closed** under the all three **regular operations**.

Proof for union Using NFA-s

If \(A_1 \) and \(A_2 \) are regular, each has its own recognizing automaton \(N_1 \) and \(N_2 \), respectively.

In order to prove that the language \(A_1 \cup A_2 \) is regular we have to construct an FA that accepts exactly the words in \(A_1 \cup A_2 \).

A Pictorial proof

![Diagram showing NFA for union of languages]

Let \(N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) recognizing \(A_1 \), and \(N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) recognizing \(A_2 \).

Construct \(N = (Q, \Sigma, \delta, q, F) \) to recognize \(A_1 \cup A_2 \),

Where \(Q = \{q_0\} \cup Q_1 \cup Q_2 \), \(F = F_1 \cup F_2 \),

\[
\delta(q,a) = \begin{cases}
\delta_1(q,a) & q \in Q_1 \\
\delta_2(q,a) & q \in Q_2 \\
\{q_1,q_2\} & q = Q_i \text{ and } a = \varepsilon \\
\emptyset & q = Q_i \text{ and } a \neq \varepsilon
\end{cases}
\]
The class of Regular languages is **closed** under the *concatenation* operation.

Proof idea

Given an input word to be checked whether it belongs to \(A_1 \circ A_2 \), we may want to run \(N_1 \) until it reaches an accepting state and then to move to \(N_2 \).

The problem: Whenever an accepting state is reached, we cannot be sure whether the word of \(A_1 \) is finished yet.

The idea: Use non-determinism to choose the right point in which the word of \(A_1 \) is finished and the word of \(A_2 \) starts.

![A Pictorial proof](diagram.png)
Proof using NFAs

Let $N_1 = (Q_1, \Sigma, \delta, q_1, F_1)$ recognizing A_1, and $N_2 = (Q_2, \Sigma, \delta, q_2, F_2)$ recognizing A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F)$ to recognize $A_1 \circ A_2$, where

$Q = Q_1 \cup Q_2$, $F = F_2$,

$$\delta(q,a) = \begin{cases}
\delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_2(q,a) & q \in F_1 \text{ and } a \neq \epsilon \\
\delta_1(q,a) \cup q_2 & q = F_1 \text{ and } a = \epsilon \\
\delta_1(q,a) & q = Q_2
\end{cases}$$

A Pictorial proof

![Diagram of NFA](image)

Proof using NFAs

Let $N_1 = (Q_1, \Sigma, \delta, q_1, F_1)$ recognizing A_1.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*

Where $Q = \{q_0\} \cup Q_1$, $F = \{q_0\} \cup F_1$, and

$$\delta(q,a) = \begin{cases}
\delta(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta(q,a) & q \in F_1 \text{ and } a \neq \epsilon \\
\delta(q,a) \cup \{q_0\} & q \in F_1 \text{ and } a = \epsilon \\
q_0 & q = q_0 \text{ and } a = \epsilon \\
\phi & q = q_0 \text{ and } a \neq \epsilon
\end{cases}$$

Theorem

The class of Regular languages is \textbf{closed} under the \textit{star} operation.
Wrap Up

In this lecture we:
• Proved equivalence between DFA-s and NFA-s.
• Motivated and defined the three Regular Operations.
• Proved that the regular operations preserve regularity.