Optimization of Package Power Delivery and Power Removal Solutions to meet Platform level Challenges

Kaladhar Radhakrishnan
Michael J. Hill
Kemal Aygün
Chia-Pin Chiu
Gaurang Choksi
Agenda

- Metrology for Platform Level Power Delivery Characterization
- New Power Delivery Architecture and Thermal Considerations for Multi-Core Servers
- Recent Advances in Package Power Delivery and Power Removal Solutions
Agenda

- Metrology for Platform Level Power Delivery Characterization
- New Power Delivery Architecture and Thermal Considerations for Multi-Core Servers
- Recent Advances in Package Power Delivery and Power Removal Solutions
Enabling Platform Level Power Delivery Characterization

- The Power Delivery Network
- Time Domain Validation
- What is Z(f)?
- Measurement Setup
- Application Examples
- Status & Plans
Typical Power Delivery Network

Third party marks and brands are the property of their respective owners
Time Domain Validation

Voltage Transient Test (VTT) Tool

Test Platform

Loadline = \Delta V/\Delta I

- VTT tool is used as CPU emulator
- Drawbacks with TD validation
 - VTT tool rise time different from that of processor
 - Not enough insight about the PD solution
What is $Z(f)$?

VR Components

Socket

Sink current from socket

Measure Voltage at MB sense pts.

$V(t)$

$i(t)$

$V(f) = \text{FFT}\{v(t)\}$

$I(f) = \text{FFT}\{i(t)\}$

$Z(f) = V(f) / I(f)$

Fourier Transform can be used to determine frequency content of a time domain signal.
Platform Z(f) – Measurement Setup

- Host System
- Scope
- USB
- GPIB
- Probes
- VTT Tool
- Target Platform

Third party marks and brands are the property of their respective owners.
Time & Frequency Domains

- **$i(t)$**
 - 1 cycle over 1 period, $1/f_0$

- **$v(t)$**
 - 1 cycle over 1 period

- **$I(f)$**
 - Frequency domain of $i(t)$
 - Points at f_0, $3f_0$, $5f_0$, $7f_0$, ...

- **$V(f)$**
 - Frequency domain of $v(t)$
 - Points at f_0, $3f_0$, $5f_0$, $7f_0$, ...

- **$Z(f) = V(f) / I(f)$**

Third party marks and brands are the property of their respective owners
Time & Frequency Domains

Sweep frequency to populate the data points on the impedance profile plot

Third party marks and brands are the property of their respective owners
Automation

Platform Z(f) can be found in ~3-5 minutes
Typical Platform \(Z(f) \)

Impedance (mΩ) vs. Frequency (MHz)

- Influenced by VR design & bandwidth
- Influenced by bulk caps
- Influenced by ceramic caps

Third party marks and brands are the property of their respective owners
Application – LGA775 platform

Bulk Caps

MLCC Caps

10 x 560 uF Bulk Caps
12 x 22 uF MLCC Caps
10 x 820 uF Bulk Caps
12 x 22 uF MLCC Caps
10 x 820 uF Bulk Caps
16 x 22 uF MLCC Caps
2 x 47uF MLCC Caps

Impedance (mΩ)

Frequency (MHz)

Loadline = 1mΩ

Third party marks and brands are the property of their respective owners
Status & Plans for OEM Deployment

• Setup and plans demonstrated to OEMs
 – Aug 5 Intel Power Summit at Dupont, WA

• Customer version of the automation tool is currently being developed
 – Tool will be designed to support different measurement setups using multiple scopes
 – Automation tool will be made available to the OEMs along with the next release of the VTT tool
Summary

- Capability developed for fully automated platform impedance profile measurements
- Steps underway for deployment of measurement capability to OEMs
Agenda

- Metrology for Platform Level Power Delivery Characterization
- **New Power Delivery Architecture and Thermal Considerations for Multi-Core Servers**
- Recent Advances in Package Power Delivery and Power Removal Solutions
Novel PD Architecture and Thermal Considerations for Multi-Core Servers

- Itanium Server PD Architecture
- Xeon Server PD Architecture
- Motivation for new architecture
- New PD Scheme for Multi-Core Servers
- Thermal Considerations
Itanium Server PD Architecture

- Power is supplied through a power pod
- Power is delivered through a topside power connector from one side of the package
Xeon Server PD Architecture

- Power is supplied through pins on the socket
- Power is supplied from the voltage regulator through the pins from two sides on the package

Third party marks and brands are the property of their respective owners
Motivation for New Architecture

- Power Delivery performance is limited with either PD architecture
- MB Real Estate for Power Delivery
- Opportunity for synergy between the Xeon and Itanium servers
New Power Delivery Architecture

- New Power Delivery Architecture
- CPU & Package
- VR Board & Heatsink
- CPU Heatsink
- VR Components
- Backing Plate & Chassis Stiffener
- MB & Socket

Third party marks and brands are the property of their respective owners
New Architecture – Package Details

- Four-sided power delivery scheme for improved performance
- Dedicated power connector is more scalable
- VR components moved to the VR board to free up MB real estate
- New TIM3 material introduced to cool VR components
Thermal Considerations

- **CPU Cooling**
 - Increased die size due to multiple cores improves CPU cooling capacity

- **VR Components**
 - Increased power dissipation from the VR components due to the increasing current levels
 - New TIM3 material introduced to keep VR component temperature under spec

- **Power Connector**
 - Joule heating in the power delivery path can drive up power connector temperature
 - Need to contain maximum current through connector pins
Thermal Analysis of the VR Board

- Global model to obtain temperature distribution across VR board
Thermal Analysis of the Connector

- Local model to estimate connector self-heating as a function of current through the pin
Summary

- Novel PD architecture introduced for multi-core servers
 - 4 sided power delivery for better performance
 - Dedicated power connector makes the new architecture more scalable
- Unified platform strategy for Xeon and Itanium server products
- TIM3 material introduced to help keep VR and power connector temperature under spec
Agenda

- Metrology for Platform Level Power Delivery Characterization
- New Power Delivery Architecture and Thermal Considerations for Multi-Core Servers
- Recent Advances in Package Power Delivery and Power Removal Solutions
Advances in Package Power Delivery and Power Removal Solutions

- Desktop & Mobile Loadline Trends
- Evolution of Capacitors
- Advances in Socket Technology
- Package Technology Improvements
- Summary
Desktop & Mobile Loadline Trends

- Loadline (milliohms) vs. Year (1998-2008)
- Yellow line represents Desktop, red line represents Mobile

Third party marks and brands are the property of their respective owners
Capacitor Technology

- Capacitor technology has evolved over the years
 - Transitioned from 2T capacitors to 0805 IDCs starting with processors in the 130 nm node
 - Processors in the 65 nm node have started using 0603 IDCs
 - Future generation processors could potentially use array capacitors if the technology warrants it
Capacitor Example

- Reducing body size drives up capacitor count

Single Core Processor

(16 x 0805 IDCs)

Dual Core Processor

(35 x 0603 IDCs)
Impedance Profile Comparison

Increased number of capacitors reduces high frequency resonant peak

Impedance vs. Frequency

- Single Core (16 x 0805 IDCs)
- Dual Core (35 x 0603 IDCs)
Improvement in socket technology has enabled us to scale the pitch and fit more pins for a given area.
Packages for the 65nm processors have increased copper in the core layers to reduce resistance.
Power Removal Strategies

- **Packaging Strategy**
 - Hot spot mitigation
 - Reduction in thermal resistance (bulk & interface)

- **Heat Sink Strategy**
 - Material & Geometry Optimization
 - Cost effective manufacturability
Hot Spot mitigation

Example: Itanium

Example: Pentium 4

*Third party marks and brands are the property of their respective owners
Heat Sink Technology

Heat Sink Thermal Performance vs. TIME

- Fan-sinks
- Extrusion Heatsinks
- Skive
- Crimped Fin
- Spiral Fan-sink

Third party marks and brands are the property of their respective owners
Summary

- The power delivery impedance target has been shrinking steadily over the years
- Capacitor technology has been steadily improving to address high frequency noise
- Improvements in socket and package technology help reduce DC resistance
- Use of the heat spreader and better TIM material have reduce package thermal resistance
- Heat sink technology has been improving to enhance cooling capability without driving up cost
Please fill out the Session Evaluation Form.

Thank You!