

Optimization of Package Power **Delivery and Power Removal Solutions to** meet Platform level Challenges Kaladhar Radhakrishnan **Michael J. Hill** Kemal Aygün **Chia-Pin Chiu Gaurang Choksi**

Agenda

 \bigcirc

Metrology for Platform Level Power Delivery Characterization

 New Power Delivery Architecture and Thermal Considerations for Multi-Core Servers

Recent Advances in Package Power Delivery and Power Removal Solutions

Agenda

 \bigcirc

Metrology for Platform Level Power Delivery Characterization

New Power Delivery Architecture and Thermal Considerations for Multi-Core Servers

Recent Advances in Package Power Delivery and Power Removal Solutions

Enabling Platform Level Power Delivery Characterization

The Power Delivery Network
Time Domain Validation
What is Z(f)?
Measurement Setup
Application Examples
Status & Plans

*Third party marks and brands are the property of their respective owners

Intel Developer

Typical Power Delivery Network

Time Domain Validation

Voltage Transient Test (VTT) Tool

Test Platform

0

inte

Loadline = $\Delta V / \Delta I$

VTT tool is used as CPU emulator
Drawbacks with TD validation
VTT tool rise time different from that of processor
Not enough insight about the PD solution

*Third party marks and brands are the property of their respective owners

Intel Developer

What is Z(f)?

VR Components

Sink current from socket

Measure Voltage at MB sense pts.

$V(f) = \frac{FFT}{v(t)}$ $I(f) = \frac{FFT}{i(t)}$

Fourier Transform can be used to determine frequency content of a time domain signal

Z(f)=V(f) / I(f)

Socket

Intel Developer

V(t)

Platform Z(f) – Measurement Setup

Time & Frequency Domains

Time & Frequency Domains

 f_1 $3f_1$ 0 $5f_1$ time V(f) FFT time f_1 $5f_1$ 0 $3f_1$ **Z(f)** Sweep frequency to populate the data points on the impedance profile plot $3f_0 3f_1 5f_0 5f_17f_0$ $f_0 f_1$ 0

FFT

intel

i(t)

1/f₁

*Third party marks and brands are the property of their respective owners

l(f)

1/2

1/3

1/5

1/7

 $7f_1$

 $7f_1$

 $7f_1$

10

• • •

• • •

• • •

freg Intel Developer

FORUM

freq

freg

Automation

intal

Platform Z(f) can be found in ~3-5 minutes

Intel Developer

11

Typical Platform Z(f)

intel

*Third party marks and brands are the property of their respective owners

Intel Developer

Application – LGA775 platform

10 x 560 uF Bulk Caps 12 x 22 uF MLCC Caps

10 x 820 uF Bulk Caps 12 x 22 uF MLCC Caps

10 x 820 uF Bulk Caps 16 x 22 uF MLCC Caps 2 x 47uF MLCC Caps

inte

*Third party marks and brands are the property of their respective owners

Intel Developer

FORUM

Status & Plans for OEM Deployment

Setup and plans demonstrated to OEMs
 Aug 5 Intel Power Summit at Dupont, WA

 Customer version of the automation tool is currently being developed

- Tool will be designed to support different measurement setups using multiple scopes
- Automation tool will be made available to the OEMs along with the next release of the VTT tool

Intel Developer

Summary

Capability developed for fully automated platform impedance profile measurements

 Steps underway for deployment of measurement capability to OEMs

Agenda

 \bigcirc

Metrology for Platform Level Power Delivery Characterization

 New Power Delivery Architecture and Thermal Considerations for Multi-Core Servers

 Recent Advances in Package Power Delivery and Power Removal Solutions

<u>Novel PD Architecture and Thermal</u> <u>Considerations for Multi-Core Servers</u>

Itanium Server PD Architecture
Xeon Server PD Architecture
Motivation for new architecture
New PD Scheme for Multi-Core Servers
Thermal Considerations

Itanium Server PD Architecture

0

Power is supplied through a power pod Power is delivered through a topside power connector from one side of the package

Xeon Server PD Architecture

0

Power is supplied through pins on the socket Power is supplied from the voltage regulator through the pins from two sides on the package

Motivation for New Architecture

- Power Delivery performance is limited with either PD architecture
- **MB Real Estate for Power Delivery**

0

0

0

Opportunity for synergy between the Xeon and Itanium servers

New Power Delivery Architecture

VR Components

0

CPU & Package

CPU Heatsink

VR Board & Heatsink

MB & Socket

21

CPU Heatsink

int_el.

Backing Plate & Chassis Stiffener

*Third party marks and brands are the property of their respective owners

Intel Developer

New Architecture – Package Details

Four-sided power delivery scheme for improved performance

Dedicated power connector is more scalable

Cross-Section

VR components moved to the VR board to free up MB real estate
 New TIM3 material introduced to cool VR components

Thermal Considerations

CPU Cooling

 Increased die size due to multiple cores improves CPU cooling capacity

VR Components

- Increased power dissipation from the VR components due to the increasing current levels
- New TIM3 material introduced to keep VR component temperature under spec

Power Connector

- Joule heating in the power delivery path can drive up power connector temperature
- Need to contain maximum current through connector pins

0

•

0

Thermal Analysis of the VR Board Global model to obtain temperature distribution across VR board

inte

25

Thermal Analysis of the Connector

 Local model to estimate connector self-heating as a function of current through the pin

*Third party marks and brands are the property of their respective owners

Intel Developer

Summary

Novel PD architecture introduced for multicore servers

4 sided power delivery for better performance

- Dedicated power connector makes the new architecture more scalable
- Unified platform strategy for Xeon and Itanium server products

 TIM3 material introduced to help keep VR and power connector temperature under spec

0

Intel Developer

Agenda

 \bigcirc

Metrology for Platform Level Power Delivery Characterization

 New Power Delivery Architecture and Thermal Considerations for Multi-Core Servers

 Recent Advances in Package Power Delivery and Power Removal Solutions

Advances in Package Power Delivery and Power Removal Solutions **Desktop & Mobile Loadline Trends** 0 Evolution of Capacitors Advances in Socket Technology Package Technology Improvements Summary

29

int-

Desktop & Mobile Loadline Trends

Intel Developer

Capacitor Technology

0805 2T Capacitor

0805 IDC

0603 IDC

Array Capacitor

Capacitor technology has evolved over the years

- Transitioned from 2T capacitors to 0805 IDCs starting with processors in the 130 nm node
 - Processors in the 65 nm node have started using 0603 IDCs
 - Future generation processors could potentially use array capacitors if the technology warrants it

 \bigcirc

31

Capacitor Example

0

inte

Reducing body size drives up capacitor count

Dual Core Processor

(35 x 0603 IDCs)

Impedance Profile Comparison

Impedance vs. Frequency

*Third party marks and brands are the property of their respective owners

FORI

Socket Technology

Socket 370 49.5 x 49.5 mm

Socket 478 35 x 35 mm Socket 775 37.5 x 37.5 mm

34

 Improvement in socket technology has enabled us to scale the pitch and fit more pins for a given area

Package Resistance

0

90nm Processor Package

0

inte

65nm Processor Package

Packages for the 65nm processors have increased copper in the core layers to reduce resistance

Intel Developer

35

Power Removal Strategies

Temperature Gradient

Packaging Smooth out Hot Spots

0

0

inte

Packaging Strategy

- Hot spot mitigation
- Reduction in thermal resistance (bulk & interface)

Heat Sink Strategy

– Material & Geometry Optimization

Cost effective manufacturability

Heatsink Duct out heat

Hot Spot mitigation

Example: Itanium

^{*}Third party marks and brands are the property of their respective owners

Heat Sink Technology

intel

Summary

The power delivery impedance target has been shrinking steadily over the years Capacitor technology has been steadily improving to address high frequency noise Improvements in socket and package technology help reduce DC resistance Use of the heat spreader and better TIM material have reduce package thermal resistance Heat sink technology has been improving to enhance cooling capability without driving up cost

Intel Developer

Please fill out the Session Evaluation

Thank You!

Form

*Third party marks and brands are the property of their respective owners

