1. Suppose \(f : A \rightarrow B \). Define the inverse set as
\[
f^{-1}(b) = \{ a \in A \mid f(a) = b \} \quad \text{for} \ b \in B.
\]
Note that \(f^{-1}(b) \) is a set. Prove that the collection of these inverse sets
\[
\{ f^{-1}(b) \mid b \in B \}
\]
is a partition of \(A \). Hint: You need to show two properties. First, prove that for all \(a \in A \), there is some \(b \) such that \(a \in f^{-1}(b) \). Second, show that each \(a \in A \) belongs to only one set \(f^{-1}(b) \) (and hence the sets \(f^{-1}(b) \) must be disjoint).

Proof: To show that the collection of sets \(f^{-1}(b) \) is a partition,
(1) \(A \) we must show that (1) the union of all sets \(f^{-1}(b) \) forms all of \(A \), and (2) these sets are all mutually disjoint.

1. \(A = \bigcup_{b \in B} f^{-1}(b) \); (i.e., \(A = \) the union of all sets \(f^{-1}(b) \))

2. \(A \subseteq \bigcup_{b \in B} f^{-1}(b) \):

 Let \(x \in A \). Then since \(f \) is a f'n, \(\exists b \in B \) s.t. \(f(x) = b \).

 So \(x \in f^{-1}(b) \), and is thus in the union of all such sets.

 \(\bigcup_{b \in B} f^{-1}(b) \subseteq A \):

 Let \(x \in \bigcup_{b \in B} f^{-1}(b) \). By def union, \(\exists b \in B \) s.t. \(x \in f^{-1}(b) \).

 By def'n, \(f^{-1}(b) = \{ x \in A \mid f(x) = b \} \). So

 \(f^{-1}(b) \subseteq A \), and so \(x \in A \).

Since \(f \) is a f'n, \(\forall a \in A \), \(f \) maps \(a \) to a single element, call it \(b \) \in B.

So \(a \) is only in one set \(f^{-1}(b) \). And \(f^{-1}(b) \subseteq A \), so it is only made of elements of \(A \), since we showed any \(a \in A \) can only be in one set. They are mutually disjoint. \(\Box \)
2. Suppose A is countable and B is uncountable. Is $A \cap B$ countable? Is $A \cup B$ countable? Why?

\[A \cap B \subseteq A, \text{ } A \text{ is countable. Therefore } A \cap B \text{ is countable because any subset of a countable set is countable.} \]

\[B \subseteq A \cup B, \text{ } B \text{ is uncountable. Therefore } A \cup B \text{ is uncountable because any set with an uncountable subset is uncountable.} \]
3. Prove by induction that

\[\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3} \quad \text{for} \quad n \geq 1. \]

Proof:

Base case.

LHS. \[\sum_{i=1}^{1} i(i+1) = 1(1+1) = 2 \]

The two sides are equal so the base case holds.

Inductive hypothesis. Let \(k \geq 1 \) and assume \(P(k) \) holds.

That is \[\sum_{i=1}^{k} i(i+1) = \frac{k(k+1)(k+2)}{3} \]

Inductive step. We must prove \(P(k+1) \) holds.

\[\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} i(i+1) + (k+1)(k+2) \]

By separating terms, by applying IH, algebra

\[= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2) \]

\[= \frac{k(k+1)(k+2) + 3(k+1)(k+2)}{3} \]

\[= \frac{(k+1)(k+2)(k+3)}{3} \]

And this is what we wanted to show. \(\square \)
4. Define the fibonacci sequence as

\[f_1 = 1 \]
\[f_2 = 1 \]
\[f_i = f_{i-1} + f_{i-2} \quad \text{for } i \geq 3. \]

Using induction, prove that \(f_{3k} \) is even for all \(k \geq 1 \) (e.g. \(f_3 \) is even, \(f_6 \) is even, etc.).

Define \(P(k) : f_{3k} \) is even.

Proof:

Basis step

Base case \(k = 1 \). Want to show \(P(1) \), i.e. that \(f_3 \) is even.

By def of sequence

\[f_3 = f_2 + f_1 \]
\[= 1 + 1 \]
\[= 2 \]

2 is even because \(2 = 2 \cdot 1 \), \(1 \in \mathbb{Z} \), so \(P(1) \) holds.

Inductive Hypothesis

Let \(k \geq 1 \) be a fixed but arbitrary \(k \), and assume \(P(j) \) holds for all \(1 \leq j \leq k \). That is

\[f_{3j} \] is even.

Inductive Step: Want to show \(P(k+1) \), that is \(f_{3(k+1)} \) is even.

\[f_{3(k+1)} = f_{3k+3} \]

By def of sequence,

\[f_{3k+3} = f_{3k+2} + f_{3k+1} \]

by expanding subscript.

By def of sequence,

\[f_{3k+2} = f_{3k+1} + f_{3k} \]
\[f_{3k+1} = f_{3k} + f_{3k-1} \]

by def.

\[f_{3k+2} = f_{3k} + 2f_{3k+1} \]

by grouping terms.

Since \(k, k-1 \leq k \), can apply inductive hypothesis, so \(3m, n \in \mathbb{Z} \) s.t.

\[f_{3k} = 2m + 2(2m + 2n) = 2(m + 2m + 2n) \]. Since \((m + 2m + 2n) \in \mathbb{Z} \),

\[f_{3k+2} \] even by def even.
5. Let d and k be positive integers. Define a relation R on \mathbb{Z} as
\[(x, y) \in R \text{ if } d \mid (x^k - y^k),\]
Prove that R is an equivalence relation.

Proof: R is an equivalence relation iff and only if it is reflexive, symmetric, and transitive.

Let $d, k \in \mathbb{Z}^+$ be fixed but arbitrary positive integers.

Reflexive: [wts. $\forall x \in \mathbb{Z}$, xRx]

Let $x \in \mathbb{Z}$. Then $x^k = x^k$, so $x^k - x^k = 0$.

And $d \mid 0 \implies 0 = d \cdot 0$.

So $d \mid (x^k - x^k)$ so xRx by def R. \(\square\)

Symmetric [wts $\forall x, y \in \mathbb{Z}$, if xRy then yRx]

Let $x, y \in \mathbb{Z}$ s.t. xRy.

By def. of R, $d \mid (x^k - y^k)$.

By def. divisibility, $x^k - y^k = dl$ for some $l \in \mathbb{Z}$.

Multiplying by (-1) on both sides,

$y^k - x^k = -dl$.

Since $-l \in \mathbb{Z}$, $d \mid (y^k - x^k)$ by def. divisibility.

So yRx by def. R. \(\square\)

Transitive [wts $\forall x, y, z \in \mathbb{Z}$, if xRy and yRz, then xRz]

Let $x, y, z \in \mathbb{Z}$ s.t. xRy and yRz.

By def. R, $d \mid (x^k - y^k)$ and $d \mid (y^k - z^k)$.

Note that $(x^k - y^k) + (y^k - z^k) = x^k - z^k$. \(\Theta\)

By def. divisibility, $x^k - y^k = dl$ for $l \in \mathbb{Z}$ and

$y^k - z^k = mL$ for $M \in \mathbb{Z}$.

So $(x^k - y^k) + (y^k - z^k) = dl + mL = d(m + l)$. Since $m + l \in \mathbb{Z}$, $d \mid (x^k - z^k)$ by def. divisibility.

Subbing m from Θ, $d \mid (x^k - z^k)$.

So xRz by def. R. \(\square\)
6. Prove that for any sets A, B, C

$$(A - B) \cap (A - C) = A - (B \cup C).$$

To prove equality we will prove both subset relations.

1. $$(A - B) \cap (A - C) \subseteq A - (B \cup C);$$

Let $x \in (A - B) \cap (A - C)$. Then by def intersection, $x \in A - B$ and $x \in A - C$. So $x \in A$ and $x \in B$ and $x \in C$, by def set difference. In particular $x \in A$. Since $x \in B$ and $x \in C$, $x \in B \cap C$, by def complement. So $x \in B \cap C = (B \cup C)^c$ by De Morgan's law. So $x \notin B \cup C$ by def complement. Since $x \in A$ and $x \notin B \cup C$, $x \in A - (B \cup C)$ by def set difference.

2. $A - (B \cup C) \subseteq (A - B) \cap (A - C);$

Let $x \in A - (B \cup C)$, so $x \in A$ and $x \notin B \cup C$. So $x \in (B \cup C)^c$ so $x \notin B \cap C$ by De Morgan's law. So $x \notin B$ and $x \notin C$ by def complement. Since $x \in A$ and $x \notin B$, $x \in A - B$ by def set difference. Since $x \in A$ and $x \notin C$, $x \in A - C$ by def set difference. So $x \in (A - B) \cap (A - C)$ by def intersection.

Note: Instead of using De Morgan's laws for sets, you could have used the following logic in the appropriate places in

1. Since $x \notin B$ and $x \notin C$, then x is not in B or C (by logical De Morgan's law), so $x \notin B \cup C$ by def union.

2. Since $x \notin B \cup C$, i.e., x is not in B or C, so x is not in B and x is not in C by logical De Morgan's law, so $x \notin B$ and $x \notin C$.

7. How many elements does $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$ have? ($\mathcal{P}(A)$ denotes the powerset of A).

- \emptyset has 0 elements.
- $\mathcal{P}(\emptyset) = \{\emptyset, \{\emptyset\}\}$ has one element.
- The powerset of a set containing n elements has 2^n elements.
 [This is from class.

Since $\mathcal{P}(\emptyset)$ contains 1 elt, $\mathcal{P}(\mathcal{P}(\emptyset))$ contains $2^1 = 2$ els.

Since $\mathcal{P}(\mathcal{P}(\emptyset))$ contains 2 els, $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$ contains

$2^2 = 4$ elements.

Note:

<table>
<thead>
<tr>
<th>Set name</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${\emptyset}$</td>
</tr>
<tr>
<td>$\mathcal{P}(\emptyset)$</td>
<td>${\emptyset, {\emptyset}}$</td>
</tr>
<tr>
<td>$\mathcal{P}(\mathcal{P}(\emptyset))$</td>
<td>${\emptyset, {\emptyset, {\emptyset}}}$</td>
</tr>
<tr>
<td>$\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$</td>
<td>${\emptyset, {\emptyset, {\emptyset, {\emptyset}}}, {\emptyset, {\emptyset, {\emptyset}}} }$</td>
</tr>
</tbody>
</table>
8. A relation R on A is circular if for all $x, y, z \in A$, xRy and yRz implies zRx. Show that a reflexive circular relation is an equivalence relation.

Proof.

reflexive: This is given, as we are told the relation is a "reflexive circular relation."

symmetric: \[\forall x, y \in A, \text{ if } xRy \text{ then } yRx \]

Let $x, y \in A$ s.t. xRy. From reflexive, we know that yRy. From definition of circular, we have that yRx. \\
(Let $y = z$ in the definition above so xRy and $yRy \rightarrow yRx$)

transitive: \[\forall x, y, z \in A, \text{ if } xRy \text{ and } yRz \text{ then } xRz \]

Let $x, y, z \in A$ s.t. xRy and yRz. By definition circular zRx. But we have shown above that R is symmetric, so xRz. \blacksquare
9. Suppose that \(f : A \rightarrow B \), \(g : B \rightarrow C \) are both onto. Prove that \(g \circ f \) is onto.

\[
\text{proof: Let } f : A \rightarrow B, \ g : B \rightarrow C
\]
both be onto.

\[
\text{[wts g \circ f onto, ie } \forall c \in C, \ \exists a \in A \text{ st. } (g \circ f)(a) = c] \]

Let \(c \in C \). Since \(g \) is onto, \(\exists b \in B \) st. \(g(b) = c \). Since \(f \) is onto, \(\exists a \in A \) st. \(f(a) = b \). So \(g(f(a)) = g(b) = c \).

Since \(g(f(a)) = (g \circ f)(a) \) by def composition of funs, we have given an \(a \) s.t. \((g \circ f)(a) = c \). There sone \(g \circ f \) is onto by definition onto. \(\square \)