Course Overview

• One big project
 – Design a processor and toolchain that implements an ISA of your own design.

• 8 Labs
 – Roughly one per week.
 – Due on Friday before class.

• Work in groups of 2 (after Lab 1)
 – No “divorces” allowed
 – Make sure you pick someone you can work with
 – You will both receive the same grade

• Watch the website and read the Announce form on the web board.
This course is a lot of work.

- “2 units” has more to do with how I’m compensated than with how much work it is.
- You will learn an enormous amount
- You will design a (multi)processor.
- You will spend a lot of hours in the lab.
- Plan accordingly.
Grading

• 85% Labs
 – Do not fall behind, since the labs build on one another

• 15% web board
 – Web board is mostly for tool/Verilog support
 – Post 1-2 times per week (questions or answers)
 – You can post illustrative code snippets but not big pieces of your project.
 – Use common sense
Collaboration

• You can discuss your project with other teams
• You can (and should) discuss tool issues with other teams
• You cannot share code
• Be familiar with UCSD policies about academic honesty, cheating, etc.
• If in doubt, ask me.
Project overview

- There are four parts
 1. Xilinx tools orientation (Lab 1)
 2. Fetch unit (Labs 2-3)
 3. ISA design and assembler (Lab 4-5)
 4. Execution unit/cool tricks (Lab 6-8)
- There will be an interview after each part.
 - Discuss with Raid and I what you did, etc.
- Preview of the labs to come:
 - The last 141L
 - http://www-cse.ucsd.edu/classes/sp07/cse141L/
Part 1: Xilinx tool orientation

• Xilinx tutorial
 – Entering, compiling, simulating, measuring a design.
 – We will be using the free Xilinx verilog/FPGA tools
 – Instructions for installing them are linked off the web page
 – These tools are the best available, but they are still idiosyncratic.

• Web board set up
 – Sign up. Post a hello message
Part 2: Implementing instruction fetch

• Lab 2 -- Fetch unit datapath
 – Implement the datapath for the fetch unit
 – We provide some scaffolding

• Lab 3 -- Fetch unit control
 – Implement the control for the fetch unit.
 – Combine it with the datapath.

• Goals: Datapath/control design discipline; verilog and Xilinx practice; learn how fetch units work.
Part 3: ISA and toolchain

- Lab 4: Design your own ISA
 - A set of target benchmarks
 - Be creative. We’ve constrained the design space to keep things interesting.
- Lab 5: Build an assembler
 - An ISA is nothing without an assembler.
 - This will make programming your processor tractable
Part 4: Build it!

• Lab 6: Back end data path
 – The hardware to implement your ISA
• Lab 7: Back end control
 – Orchestrate the ballet that is your processor.
• Lab 8: Optimize and debug
 – The sky’s the limit
 – Maybe build a multiprocessors!!!
Staff

• Professor: Steven Swanson
 – General architecture questions, lab questions, class policy questions.
 – Contact info at http://www.cse.ucsd.edu/users/swanson/

• TA: Raid Ayoub
 – Main contact for lab-related stuff
 – Office hours TBA in the lab

• TA: Joe Auricchio
 – Xilinx tools questions
 – Lab questions
 – Office hours TBA
About me

• Stuff I built: WaveScalar architecture, compiler, verilog model, and emulation platform