Quiz 3 — CSE 105, Winter 2007

Name (print): SOLUTIONS
Student I.D.: ________________

- This quiz is closed book. You are only allowed to use one page of notes (double sided is fine)

- No form of collaboration is allowed during the quiz, including sharing notes, borrowing pencils, etc.

- Your solution will be evaluated both for correctness and clarity. A poorly written solution won’t get full credit even if correct.

- Read all the problems first before you start working on any of them, so you can manage your time wisely.

- Good luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 [10 points]

Give the entire sequence of configurations (one per line) the above Turing machine goes through on input 011, starting from the initial configuration, until a final configuration is reached. (As a help, some of the configurations are already shown.)

```
<table>
<thead>
<tr>
<th>q</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>q1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>□</td>
<td>1</td>
<td>q1</td>
<td>1</td>
</tr>
<tr>
<td>□</td>
<td>1</td>
<td>1</td>
<td>q1</td>
</tr>
<tr>
<td>□</td>
<td>1</td>
<td>q2</td>
<td>1</td>
</tr>
<tr>
<td>□</td>
<td>q3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>q3</td>
<td>□</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>□</td>
<td>q4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>□</td>
<td>1</td>
<td>q4</td>
<td>0</td>
</tr>
<tr>
<td>□</td>
<td>1</td>
<td>q4</td>
<td>0</td>
</tr>
<tr>
<td>□</td>
<td>1</td>
<td>q4</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Problem 2

Consider the language:

$$\text{DISJOINT}_{\text{CFG, DFA}} = \{ \langle G, M \rangle : G \text{ is a CFG, } M \text{ is DFA, and } \mathcal{L}(G) \cap \mathcal{L}(M) = \emptyset \}.$$
Prove that DISJOINT$_{CFG, DFA}$ is decidable giving an informal description of a TM that decides DISJOINT$_{CFG, DFA}$. You may use, as a subroutine, any of the algorithms studied in class (e.g., algorithms used to prove the decidability and closure properties of languages.)

Proof. Let M' = "On input $⟨G, M⟩$,

1. Convert G to a PDA P.
2. Construct a PDA P' such that $L(P') = L(P) \cap L(M)$. This can be done by the construction given in class and section.
3. Convert P' to a CFG G'.
4. Using the decider for E_{CFG}, accept if $L(G') = \emptyset$, reject otherwise."

By construction, M' decides DISJOINT$_{CFG, DFA}$.

Problem 3

For any context free grammar G and rule R in it, let $G - R$ be the context free grammar obtained removing rule R from G. For example, if G is the grammar $S \rightarrow abS | T; T \rightarrow aT | bT | \epsilon$ and R is the rule $S \rightarrow T$, then $G - R$ is the grammar $S \rightarrow abS; T \rightarrow aT | bT | \epsilon$. We say that rule R is redundant in G if it can be removed from grammar G without affecting its language. E.g., in the example above R is not redundant in G, while rule $S \rightarrow abS$ is redundant. Consider the computational problem of determining, given a context free grammar G and rule R in it, if R is redundant in G. Formulate the problem as a language, and prove that it is undecidable.

We have several choices of undecidable languages from which we can reduce. Since we are dealing with CFGs, the two obvious choices are ALL$_{CFG}$ and EQ$_{CFG}$.

First, we need to formulate the problem as a language. Let

$$L = \{⟨G, R⟩ \mid G \text{ is a CFG, } R \text{ is a rule in } G, L(G) = L(G - R)\}.$$

First, let us reduce from ALL$_{CFG}$.

Proof. Assume that M decides L. Let M_1 = "On input $⟨G⟩$,

1. Let S be the initial nonterminal in G.
2. Let S' and T be new nonterminals—that is, the are not the same as those in G.
3. Construct a new grammar G' that contains all of the rules of G but with the additional rules $S' \rightarrow S | T$, for each $\sigma \in \Sigma$, the rule $T \rightarrow \sigma T$, and the rule $T \rightarrow \epsilon$. Let S' be the initial nonterminal of G'.
4. Let R be the rule $S \rightarrow T$ and run $M(⟨G', R⟩)$.
5. If M accepts, accept. Otherwise reject.”

To be rigorous, we need to show that M_1 decides ALL$_{CFG}$. Note that the language of the grammar G' constructed in step 3 is $L(G') = \Sigma^*$ and that $L(G' - R) = L(G)$. Therefore, $M((G', R))$ accepts if and only if $L(G) = \Sigma^*$, hence M_1 decides ALL$_{CFG}$. Since ALL$_{CFG}$ is undecidable, it must be the case that no such M exists.

Instead of ALL$_{CFG}$, we could have reduced from EQ$_{CFG}$ as follows.

Proof. Assume M decides L. Let $M_2 =$ “On input (G_1, G_2),

1. Rename the rules in G_2 to be different from the rules in G_1—this amounts to renaming the nonterminals.

2. Let S_1 and S_2 be the initial nonterminals in G_1 and (the modified) G_2, respectively.

3. Build a new grammar G' with all of the rules from G_1 and (the modified) G_2. Let S be the initial nonterminal of G' and add the rules $S \rightarrow S_1 | S_2$.

4. Run $M((G', S \rightarrow S_2))$ and reject if M rejects.

5. Run $M((G', S \rightarrow S_1))$ and reject if M rejects.

6. Accept.”

Since $L(G') = L(G_1) \cup L(G_2)$, $L(G' - (S \rightarrow S_2)) = L(G_1)$, and $L(G' - (S \rightarrow S_1)) = L(G_2)$, if M rejects in step 4, then $L(G_2) \not\subseteq L(G_1)$. Likewise, if M rejects in step 5, then $L(G_1) \not\subseteq L(G_2)$. Therefore, if M_2 accepts, then $L(G_1) \subseteq L(G_2) \subseteq L(G_1)$ so $L(G_1) = L(G_2)$. Thus, M_2 decides EQ$_{CFG}$. Since EQ$_{CFG}$ is undecidable, no such M can exist.

Note that giving either construction without the proof of correctness was acceptable and received full points.