ESC Java

Is This Program Correct?

```java
int square(int n) {
    int k = 0, r = 0, s = 1;
    while(k != n) {
        r = r + s; s = s + 2; k = k + 1;
    }
    return r;
}
```

- Type checking not enough to check this
 - Neither is data-flow analysis, nor model checking

Program Verification

- Program verification is the most powerful static analysis method
 - Can reason about all properties of programs
- Cannot fully automate
- But …
 - Can automate certain parts (ESC/Java)
 - Teaches how to reason about programs in a systematic way
Specifying Programs

- Before we check a program we must specify what it does

- We need formal specifications
 - English comments are not enough

- We use logic notation
 - Theory of pre- and post-conditions

State Predicates

- A predicate is a boolean expression on the program state (e.g., variables, object fields)

- Examples:
 - \(x = 8 \)
 - \(x < y \)
 - \(\text{true} \)
 - \(\text{false} \)
 - \((\forall i. 0 \leq i < a.length \Rightarrow a[i] \geq 0) \)

Using Predicates to Specify Programs

- We focus first on how to specify a statement

- Hoare triple for statement S

 \[\{ P \} S \{ Q \} \]

- Says that if S is started in a state that satisfies P, and S terminates, then it terminates in Q

 - This is the liberal version, which doesn’t care about termination

 - Strict version: if S is started in a state that satisfies P then S terminates in Q

Hoare Triples. Examples.

- \(\{ \text{true} \} x = 12 \{ x = 12 \} \)

- \(\{ y \geq 0 \} x = 12 \{ x = 12 \} \)

- \(\{ \text{true} \} x = 12 \{ x \geq 0 \} \)

 (Programs satisfy many possible specifications)

- \(\{ x < 10 \} x = x + 1 \{ x < 11 \} \)

- \(\{ n \geq 0 \} x = \text{fact}(n) \{ x = n! \} \)

- \(\{ \text{true} \} a = 0; \text{if}(x != 0) \{ a = 2 * x; \} \{ a = 2 * x \} \)
Computing Hoare Triples

- We compute the triples using rules
 - One rule for each statement kind
 - Rules for composed statements

Assignment

- Assignment is the simplest operation and the trickiest one to reason about!
- \{ y \geq 2 \} x = 5 \{ ? \}
- \{ x \equiv y \} x = x + 1 \{ ? \}
- \{ ? \} x = 5 \{ x \equiv y \}
- \{ ? \} x = x + 1 \{ x \equiv y \}
- \{ ? \} x = x + 1 \{ x^2 + y^2 \equiv z^2 \}
- \{ x^2 + y^2 \equiv z^2 \} x = x + 1 \{ ? \}

Assignment Rule

- Rule for assignment
 \[
 \{ Q[x := E] \} \quad x = E \quad \{ Q \}
 \]

 - \(Q\) with \(x\) replaced by \(E\)

Examples:
- \(\{ 12 \equiv 12 \} \quad x = 12 \quad \{ x \equiv 12 \}
- \{ 12 \geq 0 \} \quad x = 12 \quad \{ x \geq 0 \}
- \{ ? \} \quad x = x + 1 \quad \{ x \geq 0 \}
- \{ x \geq 1 \} \quad x = x + 1 \quad \{ ? \}

Relaxing Specifications

- Consider \(\{ x \geq 1 \} \quad x = x + 1 \quad \{ x \geq 2 \}\)
 - It is very tight specification. We can relax it
 \[
 \{ P \} \quad \text{if} \ P \Rightarrow Q[x:=E] \quad \{ Q \}
 \]

Examples:
- \(\{ x \geq 5 \} \quad x = x + 1 \quad \{ x \geq 2 \}\)
 (since \(x \geq 5 \Rightarrow x + 1 \geq 2\)
Assignments: forward and backward

- Two ways to look at the rules:
 - Backward: given post-condition, what is pre-condition?
 \[
 \begin{array}{l}
 \{ Q \}\ [x := E] \rightarrow \{ Q \} \\
 x = E \\
 \{ ?? \}
 \end{array}
 \]
 - Forward: given pre-condition, what is post-condition?
 \[
 \begin{array}{l}
 \{ P \}\ [x := E] \rightarrow \{ ?? \} \\
 x = E \\
 \{ ?? \}
 \end{array}
 \]

Example of running it forward

- \{ x == y \} \ x = x + 1 \{ ? \}
Example of running it forward

\[\{ x = y \} x = x + 1 \{ ? \} \]

\[\exists \nu. \ (\nu = y \land x = \nu + 1) \]
\[\iff \ x = y + 1 \]

Forward or Backward

- **Forward reasoning**
 - Know the precondition
 - Want to know what postcondition the code establishes

- **Backward reasoning**
 - Know what we want to code to establish
 - Must find in what precondition this happens

- Backward is used most often
 - Start with what you want to verify
 - Instead of verifying everything the code does

Weakest precondition

- \(wp(S, Q) \) is the weakest \(P \) such that \(\{ P \} S \{ Q \} \)
 - Order on predicates: Strong \(\rightarrow \) Weak
 - \(wp \) returns the “best” possible predicate
- \(wp(x := E, Q) = Q[x := E] \)
- In general:

\[
\begin{array}{c}
\{ P \} \\
S \\
\{ Q \}
\end{array}
\]

\[
\text{if } P \Rightarrow wp(S,Q)
\]

Weakest precondition

- This points to a verification algorithm:
 - Given function body annotated with pre-condition \(P \) and post-condition \(Q \):
 - Compute \(wp \) of \(Q \) with respect to function body
 - Ask a theorem prover to show that \(P \) implies the \(wp \)
- The \(wp \) function we will use is liberal (\(P \) does not guarantee termination)
 - If using both strict and liberal in the same context, the usual notation is \(wp \) the liberal version and \(wp \) for the strict one
Strongest precondition

- \(sp(S, P) \) is the strongest \(Q \) such that \(\{ P \} S \{ Q \} \)
 - Recall: Strong \(\Rightarrow \) Weak
 - \(sp \) returns the "best" possible predicate
- \(sp(x := E, P) = \ldots \)
- In general:
 \[
 \begin{array}{c}
 \{ P \} \\
 S \\
 \{ Q \} \quad \text{if} \ sp(S,P) \Rightarrow Q
 \end{array}
 \]

Strongest postcondition

- Strongest postcondition and weakest preconditions are symmetric
- This points to an equivalent verification algorithm:
 - Given function body annotated with pre-condition \(P \)
 and post-condition \(Q \):
 - Compute \(sp \) of \(P \) with respect to function body
 - Ask a theorem prover to show that the \(sp \) implies \(Q \)

Composing Specifications

- If \(\{ P \} S_1 \{ R \} \) and \(\{ R \} S_2 \{ Q \} \) then \(\{ P \} S_1; S_2 \{ Q \} \)
- Example:
 \[
 \begin{array}{l}
 x = x - 1; \\
 y = y - 1
 \end{array}
 \quad \{ x \geq y \} \]

Composing Specifications

- If \(\{ P \} S_1 \{ R \} \) and \(\{ R \} S_2 \{ Q \} \) then \(\{ P \} S_1; S_2 \{ Q \} \)
- Example:
 \[
 \begin{array}{l}
 x = x - 1; \\
 x \geq y - 1 \Leftrightarrow \{ x \geq y \}
 \end{array}
 \quad \begin{array}{l}
 y = y - 1 \\
 x \geq y - 1 \Leftrightarrow \{ x \geq y \}
 \end{array}
 \]
In terms of \(wp\) and \(sp\)

- \(wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))\)
- \(sp(S_1; S_2, P) = sp(S_2, sp(S_1, P))\)

\[7\]

Conditionals

- Rule for the conditional (flow graph)

\[\begin{align*}
T & \quad \{ P \} \\
E & \quad F
\end{align*}\]

- If \(P \land E \Rightarrow P_1\)
- If \(P \land \neg E \Rightarrow P_2\)

- Example:

\[\begin{align*}
T & \quad \{ x \geq 0 \} \\
E & \quad F
\end{align*}\]

- \(P_1\): \(x = 0\)
- \(P_2\): \(x = 1\)

\(x \geq 0 \land x = 0 \Rightarrow x = 0\) since \(x \geq 0 \land x \neq 0 \Rightarrow x \geq 1\)

Conditionals: Forward and Backward

- Recall: rule for the conditional

\[\begin{align*}
T & \quad \{ P \} \\
E & \quad F
\end{align*}\]

- Provided \(P \land E \Rightarrow P_1\)
- Provided \(P \land \neg E \Rightarrow P_2\)

- Forward: given \(P\), find \(P_1\) and \(P_2\)
 - Pick \(P_1\) to be \(P \land E\), and \(P_2\) to be \(P \land \neg E\)

- Backward: given \(P_1\) and \(P_2\), find \(P\)
 - Pick \(P\) to be \((P_1 \land E) \lor (P_2 \land \neg E)\)
 - Or pick \(P\) to be \((E \Rightarrow P_1) \land (\neg E \Rightarrow P_2)\)

Joins

- Rule for the join:

\[\begin{align*}
T & \quad \{ P_1 \} \\
E & \quad F
\end{align*}\]

- Provided \(P_1 \Rightarrow P\) and \(P_2 \Rightarrow P\)

- Forward: pick \(P\) to be \(P_1 \parallel P_2\)

- Backward: pick \(P_1, P_2\) to be \(P\)
Review

<table>
<thead>
<tr>
<th>Condition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(P^1) and (P^2) imply (P)</td>
</tr>
</tbody>
</table>

Review: forward

<table>
<thead>
<tr>
<th>Condition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(P^1) and (P^2) imply (P)</td>
</tr>
</tbody>
</table>

Implication is always in the direction of the control flow

Review: backward

<table>
<thead>
<tr>
<th>Condition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q(x := E))</td>
<td>(P) and (P^1) imply (Q)</td>
</tr>
</tbody>
</table>

Example: Absolute value

```
static int abs(int x)
//@ ensures \result >= 0
{
    if (x < 0) {
        x = -x;
    }
    if (c > 0) {
        c--; //...
    }
    return x;
}
```
Example: Absolute value

In Simplify

```lisp
> (and (implies (= a 0) (implies (or (implies (+ a 0) (= (+ a 0) 0))
                              (implies (= a 0) (implies (or (implies (+ a 0) (= (+ a 0) 0)))))
                              (implies (= a 0) (implies (or (implies (+ a 0) (= (+ a 0) 0)))))
                              (= a 0))))
1: Valid.
> 
```

Example: Absolute value

So far...

- Framework for checking pre and post conditions of computations without loops
- Suppose we want to check that some condition holds inside the computation, rather than at the end

```java
static int abs(int x) {
    if (x < 0) {
        x = -x;
        if (x > 0) {
            c--;  
        }
    } else {
        return x;
    }
}
```
Asserts

- \{ Q \land E \} \ assert(E) \{ Q \}
- Backward: wp(\assert(E), Q) = Q \land E
 \begin{align*}
 & assert(E) \\
 & \downarrow \\
 & Q
 \end{align*}
- Forward: sp(\assert(E), P) = ???
 \begin{align*}
 & assert(E) \\
 & \downarrow \\
 & ????
 \end{align*}

Example: Absolute value with assert

```
static int abs(int x)
{
    if (x < 0) {
        x = -x;
        assert(x > 0);
    }
    if (c > 0) {
        c--;
    }
    return x;
}
```
Adding the postcondition back in

```
x < 0
x = -x
assert(x > 0)
```

```
c > 0
c--
```

Another Example: Double Locking

"An attempt to re-acquire an acquired lock or release a released lock will cause a deadlock."

Calls to `lock` and `unlock` must alternate.

Locking Rules

- We assume that the boolean predicate `locked` says if the lock is held or not

- `{ ! locked && P[locked := true] } lock { P }`
 - `lock` behaves as `assert(! locked); locked = true`

- `{ locked && P[locked := false] } unlock { P }`
 - `unlock` behaves as `assert(locked); locked = false`
Locking Example

\begin{align*}
\{ !L \land P[L := true] \} & \text{lock } \{ P \} \\
\{ L \land P[L := false] \} & \text{unlock } \{ P \}
\end{align*}

Locking Example: forward direction

\begin{align*}
\{ !L \land x = 0 \} & \text{lock } \{ P \} \\
\{ !L \land P[L := true] \land x = 0 \} & \text{unlock } \{ P \}
\end{align*}