Appearance-Based Recognition

Computer Vision I
CSE252A
Lecture 19

Announcements

• HW 4 Due Date extended to Friday
• Final Exam – next Friday, 3:00-6:00 here.
• TA Evaluation forms
• Some sources on Homogenous coordinates
• Introduction to Computer Graphics: A Mathematical Approach (maybe this is the title) by Sam Buss.
• Trucco & Verri,

Recognition

Given a database of objects and an image determine what, if any of the objects are present in the image.

Problem:
Recognizing instances
Recognizing categories

Recognition

Given a database of objects and an image determine what, if any of the objects are present in the image.
Object Recognition: The Problem

Given: A database D of "known" objects and an image I:
1. Determine which (if any) objects in D appear in I
2. Determine the pose (rotation and translation) of the object

Recognition Challenges
- Within-class variability
 - Different objects within the class have different shapes or different material characteristics
 - Deformable
 - Articulated
 - Compositional
- Pose variability:
 - 2-D Image transformation (translation, rotation, scale)
 - 3-D Pose Variability (perspective, orthographic projection)
- Lighting
 - Direction (multiple sources & type)
 - Color
 - Shadows
- Occlusion – partial
- Clutter in background -> false positives

Object Recognition Issues:
- How general is the problem?
 - 2D vs. 3D
 - range of viewing conditions
 - available context
 - segmentation cues
- What sort of data is best suited to the problem?
 - Whole images
 - Local 2D features (color, texture, - 3D (range) data
- What information do we have in the database?
 - Collection of images?
 - 3-D models?
 - Learned representation?
 - Learned classifiers?
- How many objects are involved?
 - small: brute force search
 - large: ??

A Rough Recognition Spectrum

Appearance-Based Recognition
 - Eigenface, Fisherface

Local Features + Spatial Relations

3-D Model-Based Recognition

Image Abstractions/ Volumetric Primitives

Increasing Generality

Sketch of a Pattern Recognition Architecture

Image (window) → Feature Extraction → Feature Vector → Classification → Object Identity

Example: Face Detection
- Scan window over image.
- Classify window as either:
 - Face
 - Non-face
Pattern Classification Summary

- Supervised vs. Unsupervised: Do we have labels?
- Supervised
 - Nearest Neighbor
 - Bayesian
 - Plug in classifier
 - Distribution-based
 - Projection Methods (Fisher’s, LDA)
 - Neural Network
 - Support Vector Machine
 - Kernel methods
- Unsupervised
 - Clustering
 - Reinforcement learning

Image as a Feature Vector

- Consider an n-pixel image to be a point in an n-dimensional space, \(x \in \mathbb{R}^n \).
- Each pixel value is a coordinate of \(x \).

Nearest Neighbor Classifier

\(\{ R_j \} \) are set of training images.

\[\text{ID} = \arg \min_j \text{dist}(R_j, I) \]

Comments

- Sometimes called “Template Matching”
- Variations on distance function (e.g. \(L_1 \), robust distances)
- Multiple templates per class - perhaps many training images per class.
- Expensive to compute \(k \) distances, especially when each image is big (\(N \) dimensional).
- May not generalize well to unseen examples of class.
- Some solutions:
 - Bayesian classification
 - Dimensionality reduction

Bayesian Classification

Basic ideas in classifiers

- Loss
 - some errors may be more expensive than others
 - e.g. a fatal disease that is easily cured by a cheap medicine
 with no side-effects -> false positives in diagnosis are better than false negatives
 - We discuss two class classification: \(L(1 \rightarrow 2) \) is the loss caused by calling 1 a 2
- Total risk of using classifier \(s \)

\[R(s) = Pr(1 \rightarrow 2 \mid \text{using } s) L(1 \rightarrow 2) + Pr(2 \rightarrow 1 \mid \text{using } s) L(2 \rightarrow 1) \]
Basic ideas in classifiers

- Generally, we should classify as 1 if the expected loss of classifying as 1 is better than for 2
- gives

\[p(1|x)I(1 \rightarrow 2) > p(2|x)I(2 \rightarrow 1) \]

\[p(1|x)I(1 \rightarrow 2) < p(2|x)I(2 \rightarrow 1) \]

- Crucial notion: Decision boundary
 - points where the loss is the same for either case

Some loss may be inevitable: the minimum risk (shaded area) is called the Bayes risk

Finding a decision boundary is not the same as modeling a conditional density.

Example: known distributions

\[p(k \mid x) = \frac{1}{(2\pi)^{p/2}} \left| \Sigma \right|^{-1/2} \exp \left\{ -\frac{1}{2} (x - \mu_k)^T \Sigma^{-1} (x - \mu_k) \right\} \]

- Assume normal class densities, \(p \)-dimensional measurements with common (known) covariance and different (known) means
- Class priors are
- Can ignore a common factor in posteriors - important; posteriors are then:

\[p(k \mid x) \propto \pi_k \frac{1}{(2\pi)^{p/2}} \left| \Sigma \right|^{-1/2} \exp \left\{ -\frac{1}{2} (x - \mu_k)^T \Sigma^{-1} (x - \mu_k) \right\} \]

Plug-in classifiers

- Assume that distributions have some parametric form - now estimate the parameters from the data.
- Common:
 - assume a normal distribution with shared covariance, different means; use usual estimates
 - ditto, but different covariances; ditto
- Issue: parameter estimates that are “good” may not give optimal classifiers.

Classifier boils down to:
choose class that minimizes:

\[\delta(x) = -2 \log \pi_k \]

where

Mahalanobis distance

\[d(x) = (x - \mu_k)^T \Sigma^{-1} (x - \mu_k) \]

because covariance is common, this simplifies to sign of a linear expression (i.e. Voronoi diagram in 2D for \(\Sigma = I \))
Example: Face Detection

- Scan window over image.
- Classify window as either:
 - Face
 - Non-face

Example: Finding skin

Non-parametric Representation of CCD

- Skin has a very small range of (intensity independent) colors, and little texture
 - Compute an intensity-independent color measure, check if color is in this range, check if there is little texture (median filter)
 - See this as a classifier - we can set up the tests by hand, or learn them.
 - Get class conditional densities (histograms), priors from data (counting)
- Classifier is
 - if $p(\text{skin}|x) > \theta$, classify as skin
 - if $p(\text{skin}|x) < \theta$, classify as not skin
 - if $p(\text{skin}|x) = \theta$, choose classes uniformly and at random

Eigenfaces: linear projection

- An n-pixel image $x \in \mathbb{R}^n$ can be projected to a low-dimensional feature space $y \in \mathbb{R}^m$ by
 \[y = Wx \]
 where W is an n by m matrix.
- Recognition is performed using nearest neighbor in \mathbb{R}^m.
- How do we choose a good W?

Eigenfaces: Principal Component Analysis (PCA)

Assume we have a set of n feature vectors x_i ($i = 1, \ldots, n$) in \mathbb{R}^d. Write
\[\mu = \frac{1}{n} \sum x_i \]
\[\Sigma = \frac{1}{n-1} \sum (x_i - \mu)(x_i - \mu)^T \]
The unit eigenvectors of Σ — which we write as v_1, v_2, \ldots, v_k, where the order is given by the size of the eigenvalue and v_1 has the largest eigenvalue — give a set of features with the following properties:
- They are independent.
- Projection onto the basis $\{v_1, \ldots, v_k\}$ gives the k-dimensional set of linear features that preserve the most variance.

Algorithm 22.5: Principal components analysis identifies a collection of linear features that are independent, and capture as much variance as possible from a dataset.

Some details: Use Singular value decomposition, “trick” described in text to compute basis when $n \ll d$