1 Problem 2: Search reduces to decision

Let

\[VC = \{(G, k) \mid G \text{ has a vertex cover of size } \leq k\} . \]

If \(G \) is a graph, let \(V(G), E(G) \) represent its vertices, edges. Also, if \(S \subseteq V(G) \), let \(G - S = (V(G) - S, E(G) - \{ e \in E(G) \mid e \cap S \neq \emptyset \}) \). Also, if \(v \in V(G) \), let \(N_G(v) = \{ u \in V(G) \mid \{ u, v \} \in E(G) \} \) be the neighbors of \(v \).

Claim 1. The smallest vertex cover search problem poly-time Turing reduces to VC.

Proof. The following algorithm suffices.

1. \(A^{VC}(G_0) \)
2. for \(k \leftarrow 0, \ldots, |V(G_0)| \)
3. if \((G_0, k) \in VC \), break
4. \(C \leftarrow \emptyset, G \leftarrow G_0 \)
5. while \(k > 0 \)
6. let \(v \in V(G) \)
7. if \((G - \{ v \}, k - 1) \in VC \)
8. \((C, k, G) \leftarrow (C \cup \{ v \}, k - 1, G - \{ v \}) \)
9. else
10. \((C, k, G) \leftarrow (C \cup N_G(v), k - |N_G(v)|, G - N_G(v) - \{ v \}) \)
11. return \(C \)

Note that we could use binary search in place of lines 2-3 to find the size \(k \) of a smallest vertex cover, but for simplicity we don’t bother. To see the correctness of the algorithm, we claim that the while loop maintains the following invariant: \(k \) is the size of a smallest vertex cover of \(G \) and every smallest vertex cover of \(G \) when unioned with \(C \) is a smallest vertex cover of \(G_0 \).

Clearly the invariant holds initially. If \((G - \{ v \}, k - 1) \in VC \), then \(v \) is an element of some smallest vertex cover of \(G \), and so the invariant holds. Otherwise, \(v \) is not an element of any smallest vertex cover of \(G \), and so \(N_G(v) \) is in every smallest vertex cover of \(G \), and again the invariant holds.

At each step, \(|V(G)| \) deceases by at least 1, and so the while loop iterates at most \(|V(G_0)| \) times, so the algorithm takes a polynomial amount of time. The loop invariant implies that when the while loop terminates the output is correct. \(\square \)