CSE 20—Discrete Math

Spring, 2006

October 13 (Day 7)

Number Theory

Instructor: Neil Rhodes

Modulo

Remainder when dividing two positive integers (mod as an operator):

- \(n = m \cdot \lfloor \frac{n}{m} \rfloor + (n \mod m) \)

Extended to negative numbers \((y \neq 0)\):

- \(x \mod y = x - y \cdot \lfloor \frac{x}{y} \rfloor \)

Equivalence classes (mod as an equivalence relation)

- \(a \equiv b \mod m \) iff \(a - b \) is a multiple of \(m \)

Residue classes mod \(m \)

- \(m \) of them
 - All \(a \) such that \(a \equiv 0 \mod m \)
 - All \(a \) such that \(a \equiv 1 \mod m \)
 - \(\ldots \)
 - All \(a \) such that \(a \equiv m-1 \mod m \)

Modulo Arithmetic

If:

- \(x = x' \mod m \)
- \(y = y' \mod m \)
- \(z = z' \mod m \)

Then

- \(x + y \equiv x' + y' \mod m \)
- \(x - y \equiv x' - y' \mod m \)
- \(xy \equiv x'y' \mod m \)
- \(xy+z \equiv x'y' +z' \mod m \)

Casting out 9’s

Given \(x \), how to calculate \(x \mod 9 \)

- Take all the digits of \(x \)
- Add them together. If the result is bigger than 9, use this formula recursively

Shortcut:

- As you are adding the digits of \(x \), if you ever have an intermediate value \(\geq 9 \), add its two digits together
- If you ever find a 9, throw it away *(cast it out)*

Example:

- 532 + 656
- 1273

Why it works:

- \(10 \equiv 1 \mod 9 \)
- \(10^n \equiv 1 \mod 9 \)
- \(10^a \equiv a \mod 9 \)
- \(10^a+10^{a+1}b+10^{a+2}c+\ldots+10y+z \equiv (a + b + c + \ldots + y + z) \mod 9 \)

Limitations:
Casting out 11’s

Given x, how to calculate $x \mod 11$
- Starting from the right, alternately add and subtract each digit

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>532</td>
<td>+</td>
<td>656</td>
</tr>
<tr>
<td>95</td>
<td>x</td>
<td>5723386</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51553</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1823</td>
</tr>
<tr>
<td></td>
<td></td>
<td>259057718458</td>
</tr>
</tbody>
</table>

Why it works
- $10 \equiv -1 \mod 11$
- $100 \equiv (10\times10) \mod 11 \equiv (-1\times-1) \mod 11 = 1 \mod 11$
- if n is
 - even: $10^n \equiv 1 \mod 1$
 - odd: $10^n \equiv -1 \mod 1$
- $10^a \equiv a \mod 11$ (or $10^a \equiv -a \mod 11$)
- $10^a + 10^{a-1}b + 10^{a-2}c + \ldots + 10y + z \equiv (z - y + \ldots - c + b - a) \mod 11$

Application: ISBN Check digit

Check digit for ISBN:
- 1•first digit
- + 2•second digit
- + 3•third digit
- + 9•9th’ digit
- + total $\mod 11 = \text{check digit}$

Alternatively:
- 10•first-digit
- + 9•second digit
- + 8•third-digit
- + 2•ninth digit
- + 1•check digit

Rationals and Irrationals

Rationals are closed under addition, subtraction, multiplication, and division
- except division by zero

Irrationals are not closed under multiplication
- Irrational * irrational may equal rational

- What about irrational * (non-zero) rational?

Mersenne Primes

Primes of the form 2^n-1
- For example, 3, 7, 31, 63
- Any such prime must actually be of the form 2^n-1
 - Because $2^{n-1} = 2^{n-1}(2^{(n-1)} + 2^{(n-2)} + \ldots + 1)$
- 43rd known Mersenne prime: $2^{30,402,457}-1$
 - Contains >9,000,000 digits
Sieve of Eratosthenes
Make a list of natural numbers
Circle the first number, 2, and mark all its multiples
Repeat
• Circle the first uncircled unmarked number
• Mark all its multiples
Circled numbers are prime

Distribution of Prime Numbers
There are approximately $x/\ln x$ primes ≤ x
• (The size of the nth prime is approximately $n/\ln n$)

gcd, lcm, Φ
Greatest Common Divisor (gcd)
• $\text{gcd}(m, n)$ is the largest integer k that divides integers m and n
 - $k \mid m$ and $k \mid n$
• $\text{gcd}(m, n)$ is a linear combination (with integer coefficients) of m and n
 - $\exists i, j \in \mathbb{Z}; \text{gcd}(m, n) = im + jn$
• To calculate $\text{gcd}(m, n)$
 - Compute prime factorization of m and n
 - $\text{gcd}(m, n) = \text{common prime factors (and powers) of } m \text{ and } n$
• Euclid's algorithm
 - int $\text{gcd}(m, n)$
 - if $(n == 0)$ return m
 - else return $\text{gcd}(n, n \% m)$

Least Common Multiple (lcm)
• $\text{lcm}(m, n)$ is the smallest integer k such that integers m and n divide k
 - $m \mid k$ and $n \mid k$
• To calculate $\text{lcm}(m, n)$
 - Compute prime factorizations of m and n
 - $\text{lcm}(m, n) = \text{union of prime factors (and powers) of } m \text{ and } n$

Φ (Euler function, or totient function)
• $\Phi(n) = $ the number of positive integers $k \leq n$ such that $k \perp n \Leftrightarrow (\text{gcd}(k, n) = 1)$
Cryptography

Definitions:
- Plaintext: message being encoded
- Ciphertext: encoded plaintext
- Key: parameter to crypto algorithms
 - $C = E(P, K_E)$
 - $P = D(C, K_D)$

Simple cipher (Caesar cipher):
- $K_E = K_D$ = permutation from letters to letters
 - $A \rightarrow X$
 - $B \rightarrow L$
 - \ldots
 - $Z \rightarrow R$
- $E = $ apply K_E to each character in plaintext
- $D = $ apply K_E^{-1} to each character in ciphertext
- Weakness: letter frequencies

Unbreakable Code

One-time pad
- $K_E = K_D$ = long stream of random bytes
 - Really random, not pseudo-random
- $E(P, K_E)$
 - for $i = 1$ to length(P)
 - $C[i] = P[i] XOR K_E[i]$
- $D = E$
- Alice sends message to Bob
 - Uses secret one-time pad
 - Encrypts P
 - Destroys P and one-time pad
- Bob decrypts
 - Using one-time pad
- Alternative encryption (by-hand)
 - Modular arithmetic
- Weakness
 - Key must be as long as plaintext
 - Key must be used only once
 - Key must be truly random

Reusing Key

Problem
- If plaintext and ciphertext are both known, key can be reverse-engineered
 - $K_E[i] = P[i] XOR C[i]$
- How to know plaintext if it is encrypted?
 - Cause specific plaintext to be sent
 - British would mine specific areas in WWII so that the Germans would send
 message including “minen” and location.