Powers of Permutations

To calculate the power of a function f, calculate the power of each cycle:

- Calculate final result for each element (using $i \mod \text{cycle-length}$)
- 1-cycles stay 1-cycles
- For example, if $f = (1, 2, 4), (3, 8, 7, 10), (5), (6), (9)$
 - $f^0 = (1, 2, 4), (3, 7, 6, 10), (5), (6), (9)$
- If all cycle lengths divide i evenly, f^i is the identity permutation
- If f is a permutation of A, then $f^{|A|}$ is the identity permutation

Functions

Given $f : A \rightarrow B$

- **Inverse Image** of f:

 $$f^{-1}(b) = \{ a : a \in A \text{ and } f(a) = b \}$$

- **Coimage** of f: partition of A where all elements in a block map to the same element of B

 $$\text{Coimage}(f) = \{ f^{-1}(b) : b \in \text{Image}(f) \}$$

Partition

Given a set $S = \{a_1, a_2, \ldots, a_n\}$:

- A partition P is a set of subsets of S such that:
 - the elements of P cover S
 - The elements of P are pairwise disjoint
 - No element of P is empty
 - The elements of P are called the **blocks** of the partition
Number of Partitions

Given \(S = \{a_1, a_2, \ldots, a_n\} \):
- How many partitions of \(S \) are there?
- How many partitions of size \(k \) are there?
 - If \(a_n \) is in a new block:
 - If \(a_n \) is in an existing block
 - \(S(n, k) \) is the \textit{Stirling number of the second kind} of \(\binom{n}{k} \)
 - \(S(n, k) = \)

Calculating \(S(n, k) \)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of functions

Given sets \(A \) and \(B \), how many functions are there of the form \(f: A \rightarrow B \) where \(|\text{Image}(f)| = k \)
- How many partitions of \(A \) are there of size \(k \)?
- How many images are there of size \(k \)?
- How many ways to map the blocks of \(\text{Coimage}(f) \) to \(\text{Image}(f) \)?

Summing a sequence

Specific sum
- \(1 + 2 + 3 + \ldots + n-1 + n \)

General summation of a sequence of terms:
- \(a_1 + a_2 + \ldots + a_n \)
Sigma notation

Ellipsis (…) notation is vague and wordy
Sigma notation is more compact:
\[\sum_{k=1}^{n} k \]

Parts of the notation
- Summand
- Index variable
- Lower limit
- Upper limit

Sigma notation inline: \(\sum_{k=1}^{n} k \)

Sigma notation
Ellipsis (…) notation is vague and wordy
Sigma notation is more compact:

Parts of the notation
- Summand
- Index variable
- Lower limit
- Upper limit

Sigma notation inline: \(\sum_{k=1}^{n} k \)

Changing the index variable

Can always change from one index variable to another:
\[\sum_{1 \leq k \leq n} a_k = \]

What if we want to switch from \(k \) to \(k+1 \)?
- Compare:
 \[\sum_{1 \leq k \leq n} a_k = \]
- To:
 \[\sum_{k=1}^{n} a_k = \]

Generalized Sigma notation

Specify a condition that the index variable must satisfy:
\[\sum_{1 \leq k \leq n} k \]

- Compare:
 \[\sum_{1 \leq k \leq 100} k^2 \]
- To:
 \[\sum_{k=0}^{49} (2k+1)^2 \]

Zero terms are OK

Which is better?
\[\sum_{k=2}^{n-1} k(k-1)(n-k) \]

or:
\[\sum_{k=0}^{n} k(k-1)(n-k) \]
Using Iverson Notation

Iverson notation. True-or-false statement enclosed in brackets. Value is 0 or 1

- \([p \text{ odd}] = \sum_{k \in K \text{ odd}} k^2\]

Example:

\[\sum_{1 \leq k \leq 100} k^2 = \sum_{k} k^2[1 \leq k \leq 100][k \text{ odd}]\]

0 in Iverson notation is very strongly zero

\[\sum_{k} \frac{1}{k}[k > 0]\]

Products

Pi notation is similar to Sigma notation

\[\prod_{k=1}^{n} k = 1 \times 2 \times 3 \times \cdots (n-1) \times n\]

Working with summations

Distributive law

\[\sum_{k \in K} c a_k = c \sum_{k \in K} a_k\]

Associative law

\[\sum_{k \in K} a_k + b_k = \sum_{k \in K} a_k + \sum_{k \in K} b_k\]

Commutative law

\[\sum_{k \in K} a_k = \sum_{p(k) \in K} a_k\]

Closed forms for summations

Closed form is a formula for a summation with the summation removed.

\[\sum_{0 \leq k \leq n} k = \frac{n(n + 1)}{2}\]
Example

\[\sum_{0 \leq k \leq n} (a + bk) = \]

Perturbation method

Given:

\[S_n = \sum_{0 \leq k \leq n} a_k. \]

Rewrite \(S_{n+1} \) by splitting off first and last term:

\[S_n + a_{n+1} = a_0 + \sum_{1 \leq k \leq n+1} a_k \]
\[= a_0 + \sum_{1 \leq k+1 \leq n+1} a_k \]
\[= a_0 + \sum_{0 \leq k \leq n} a_k \]

Then, work on last sum and express in terms of \(S_n \). Finally, solve for \(S_n \).

Perturbation method example

\[S_n = \sum_{0 \leq k \leq n} x^k \]

Standard closed forms

Arithmetic series

\[\sum_{k=0}^{n} k = \frac{1}{2} n(n + 1) \]

Sums of squares and cubes

\[\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \]
\[\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4} \]
Standard closed forms

Geometric series ($x \neq 1$)

\[
\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}
\]

Infinite Geometric series ($|x| < 1$)

\[
\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}
\]

Harmonic series

\[
H_n = \sum_{k=0}^{n} \frac{1}{k} \approx \ln n
\]

<table>
<thead>
<tr>
<th>n</th>
<th>H_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.61</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>1.61</td>
</tr>
<tr>
<td>3</td>
<td>2.08</td>
</tr>
<tr>
<td>4</td>
<td>2.53</td>
</tr>
<tr>
<td>5</td>
<td>2.96</td>
</tr>
<tr>
<td>6</td>
<td>3.37</td>
</tr>
</tbody>
</table>

Application of harmonic series

Given a stack of 52 playing cards (of length 2 units). Can you stack them overlapping so the top card completely overhangs the table?