CSE140 L

Instructor: Thomas Y. P. Lee
January 11, 2006

CSE140L Course Info

- Lectures
 - Wednesday 10:00-11:20AM, HSS1330
- Lab 1 Assignment Begins
 - TA's JinHua Liu (jhiu@cs.ucsd.edu)
 - Contact TAs if you're still looking for a lab partner.
 - Lab group list is maintained on the webboard.
 - TA office hour will be posted on the class webpage.
- Office Hours
 - E-mail: yunparm_lee@yahoo.com (may change later)
 - Office Hours: appointment only
- Lab Hours Start from next week
 - When: check website for detail schedule
 - Where: B230, B240, B250, B260, B270
 - You may work on your own PC. VHDL or Verilog both accepted.
- Course Policy
 - Honesty is strictly enforced. You may only discuss project with your lab partner.
Acknowledgements

- **Materials in the lecture are courtesy of the following school and people**
 - Professor C.K. Cheng of UCSD
 - Prof. Anantha Chandrakasan and Prof. Donald E. Troxel of MIT
 - *Introduction to Digital Logic Design*

CSE140L Course Info (Cont)

- **Course Text**
 - Class Website
 - Webboard, check frequently

- **Grading**
 - 70% of four labs
 - 30% of Final Exam
Agenda

● NMOS, PMOS, CMOS Inverter, CMOS NAND Gate
● Boolean Logic
● Design Styles
 ◆ ASIC v.s FPGA
 ◆ FPGA Device Structure
 ◆ IC Design Flow
 ◆ FPGA Design Flow

CSE140L Topics

● NMOS Transistor, PMOS Transistor, CMOS Inverter, CMOS NAND
● FPGA Structure
● Propagation Delay, Power Consumption, Timing Analysis
● Lab1: Combinational Circuit, Arithmetic Circuit:
 ▪ Adder, Subtractor, multiplexer, comparator
● Lab 2:Sequential Circuit:
 ▪ Counters, Flip flops, Latches
● Lab 3:Finite State Machine: Mealy Machine, Moore Machine
● Lab 4:Simple Computer System
N-Channel MOS (NMOS) Transistor

- The voltage on the gate controls the current that flows between the source and drain.
 - For NMOS, normally $V_{GS} \geq 0$
 - Voltage controlled resistance, increase V_{GS}, then decrease R_{ds}
- If $V_{GS} = 0$, then R_{ds} is very high > 106 ohms or more
- N-Switch, Gate is 1, then drain D, source S are connected, Gate is 0, then drain D, source S are not connected

P-Channel MOS (PMOS) Transistor

- Same as NMOS, but source is at higher voltage than drain
 - For PMOS, normally $V_{GS} \leq 0$
 - Voltage controlled resistance, decrease V_{GS}, then decrease R_{ds}
- P-Switch, Gate is 0, then drain D, source S are connected, Gate is 1, then drain D, source S are not connected
CMOS Inverter Circuit

<table>
<thead>
<tr>
<th>V_{in}</th>
<th>PMOS</th>
<th>NMOS</th>
<th>V_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 (L)</td>
<td>CLOSED</td>
<td>OPEN</td>
<td>5.0 (H)</td>
</tr>
<tr>
<td>5.0 (H)</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>0.0 (L)</td>
</tr>
</tbody>
</table>

$V_{DD} = +5.0 \, V$

PMOS

CMOS NAND Gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>
DeMorgan’s Law

- \(\neg(x \land y) = \neg x \lor \neg y\)
- \(\neg(x \lor y) = \neg x \land \neg y\)

Proof by perfect induction:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(\neg(x \land y))</th>
<th>(\neg x \lor \neg y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

An Example from Logic Diagram to Boolean Equation
ASIC v.s FPGA

- **ASIC – Application Specific Integrated Circuits**
 - Full-Custom ASICs
 - Standard Cell-Based ASICs, standard cell library based
 - Most EDA tools target for ASIC

- **FPGA - Field Programmable Gate Array**
 - General purpose logic device which can be programmed to perform to meet specific design specification

Comparison of ASIC vs. FPGA

- FPGA-macrocells consist of programmable array logic followed by a flip-flop or latch
 - Static RAM Based FPGA
 - PROM/Flash Based FPGA
 - Fused/Anti Fused Base FPGA

- Comparison

<table>
<thead>
<tr>
<th></th>
<th>ASIC</th>
<th>FPGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Turn Around Time</td>
<td>Low</td>
<td>Fast</td>
</tr>
<tr>
<td>Manufacturing Cost</td>
<td>Economical for Mass Production</td>
<td>Cost effective for low volume production. Experimental prototype</td>
</tr>
</tbody>
</table>
FPGA Device Structure

- FPGA consist of
 - Basic Logic Cells (consists of combinational logic and I/O registers)
 - Xilinx: Configurable Logic Block (CLB)
 - Altera: Logic Array Block (LAB)
 - I/O Cells
 - Reconfigurable interconnect wires

Introduction to IC Design Flow

- According to design needs of different ICs, to choose the appropriate design flows.

<table>
<thead>
<tr>
<th>Different Semiconductor/IC Types</th>
<th>Density and Speed of IC</th>
<th>Circuits</th>
<th>HDL</th>
<th>Routing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Custom Design Flow</td>
<td>High Density, high speed, high sensitivity IC</td>
<td>Transistor level</td>
<td>N.A</td>
<td>Manually Routing, cost very high</td>
</tr>
<tr>
<td>Cell Based Design Flow</td>
<td>High complexity, high density IC</td>
<td>Cell Based design and library</td>
<td>HDL</td>
<td>Automatic Routing</td>
</tr>
<tr>
<td>FPGA Design Flow</td>
<td>High density IC</td>
<td>CLB or LAB</td>
<td>HDL, reconfigurable rapid prototype</td>
<td>Automatic Routing, No Mask Required</td>
</tr>
<tr>
<td>MMIC Design Flow</td>
<td>High frequency, high power IC</td>
<td>Cell based design and library</td>
<td>Cell Based</td>
<td>Manually Routing</td>
</tr>
</tbody>
</table>