Random Variables
and
Random Vectors

Random variables
• Samples from a random variable are real numbers
 – A random variable is associated with a probability distribution
 over these real values
 – Two types of random variables
 • Discrete
 – Only finitely many possible values for the random variable:
 \(X \in \{a_1, a_2, \ldots, a_n\}\)
 – (Could also have a countable infinity of possible values)
 – E.g., the random variable could take any positive integer value
 – Each possible value has a finite probability of occurring.
 • Continuous
 – Infinitely many possible values for the random variable
 – E.g., \(X \in \text{Real numbers}\)

Discrete random variables
• Discrete random variables have a pmf (probability mass function), \(P\)
 \(P(X = a) = P(a)\)
• Example: Coin flip
 \(X = 0\) if heads
 \(X = 1\) if tails
 – What is the pmf of this random variable?

Continuous random variables
• Continuous random variables have a pdf (probability density function), \(p\)
• Example: Uniform distribution
 \(p(1.3) = ?\) \(p(2.4) = ?\)
 What is the probability that \(X = 1.3\) exactly:
 \(P(X = 1.3) = ?\)
 Probability corresponds to area under the pdf.
 \(P(1 < X < 1.5) = \int_{1}^{1.5} p(x) dx = 0.25\)

Good Review Materials

http://www.imageprocessingbook.com/DIP2E/dip2e_downloads/review_material_downloads.htm
• (Gonzales & Woods review materials)
• Chapt. 1: Linear Algebra Review
• Chapt. 2: Probability, Random Variables, Random Vectors
Continuous random variables

• What is the total area under any pdf?
 \[\int_{-\infty}^{\infty} p(x) dx = 1 \]

• Example continuous random variable: Human heights

<table>
<thead>
<tr>
<th>p(h)</th>
<th>p(h)</th>
<th>p(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
</tbody>
</table>

Random variables

• How much change do you have on you?
 – Asking a person (chosen at random) that question can be thought of as sampling from a random variable.

• Is the random variable “Amount of change people carry” discrete or continuous?

Random variables: Mean & Variance

• These formulas can be used to find the mean and variance of a random variable when its true probability distribution is known.

<table>
<thead>
<tr>
<th>Definition</th>
<th>Discrete r.v.</th>
<th>Continuous r.v.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (\mu)</td>
<td>(\mu = \sum a_i P(a_i))</td>
<td>(\mu = \int_{-\infty}^{\infty} x \cdot p(x) dx)</td>
</tr>
<tr>
<td>Variance (\text{Var}(X))</td>
<td>(\sum (a_i - \mu)^2 P(a_i))</td>
<td>(\int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) dx)</td>
</tr>
</tbody>
</table>

The Gaussian distribution

\[p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \]

\(X \sim \text{N}(\mu, \sigma^2) \)

An important type of random variable

Estimating the Mean & Variance

– After sampling from a random variable \(n \) times, these formulas can be used to estimate the mean and variance of the random variable.

• Samples \(x_1, x_2, x_3, \ldots, x_n \)

Estimated mean:

\[m = \frac{1}{n} \sum_{i=1}^{n} x_i \]

Estimated variance:

\[\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - m)^2 \]

← maximum likelihood estimate

\[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2 \]

← unbiased estimate
Finding mean, variance in Matlab

- Samples \(x = [x_1, x_2, \ldots, x_n] \)
- Mean
 \[
 m = \left(\frac{1}{n} \right) \sum x
 \]
- Variance
 \[
 \sigma^2 = \frac{1}{n} [x_1 - m \ x_2 - m \ \ldots \ x_n - m]
 \]
 \[
 \begin{bmatrix}
 x_1 - m \\
 x_2 - m \\
 \vdots \\
 x_n - m
 \end{bmatrix}
 \]

Method 1:
\[
\triangleright v = (\frac{1}{n}) \ast (x - m) \ast (x - m)'
\]
Method 2:
\[
\triangleright z = x - m \\
\triangleright v = (\frac{1}{n}) \ast z \ast z'
\]

Example continuous random variable

- People’s heights (made up)
 - Gaussian
 \(\mu = 67, \sigma^2 = 20 \)
 - What if you went to a planet where heights Gaussian
 \(\mu = 75, \sigma^2 = 5 \)
 - How would they be different from us?

Example continuous random variable

- Time people woke up this morning
 - Gaussian
 \(\mu = 9, \sigma^2 = 1 \)

Random vectors

- An \(n \)-dimensional random vector consists of \(n \) random variables that are all associated with the same events.
- Example 2-D random vector:
 \[
 V = \begin{bmatrix}
 X \\
 Y
 \end{bmatrix}
 \]
 where \(X \) is random variable of human heights
 \(Y \) is random variable of wake-up times
- Sample \(n \) times from \(V \).
 \[
 \begin{bmatrix}
 v_1 & v_2 & \ldots & v_n \\
 x_1 & x_2 & \ldots & x_n \\
 y_1 & y_2 & \ldots & y_n
 \end{bmatrix}
 \]

Let’s collect some samples and graph them:

\(y \) (wake-up times)
\(x \) (heights)

Mean of a random vector

- Estimating the mean of a random vector
 - \(n \) samples from \(V \)
 \[
 \begin{bmatrix}
 v_1 & v_2 & \ldots & v_n \\
 x_1 & x_2 & \ldots & x_n \\
 y_1 & y_2 & \ldots & y_n
 \end{bmatrix}
 \]

\[
\text{Mean } m = \frac{1}{n} \sum v = \frac{1}{n} \sum x = \frac{[m_x]}{[m_y]}
\]

- To estimate mean of \(V \) in Matlab
 \[
 \triangleright (\frac{1}{n}) \ast \sum (v, 2)
 \]
Random vector

- Example 2-D random vector:
 \[
 \mathbf{V} = \begin{bmatrix} X \\ Y \end{bmatrix}
 \]
 where \(X \) is random variable of human **heights**
 \(Y \) is random variable of human **weights**

- Sample \(n \) times from \(\mathbf{V} \):
 \[
 \mathbf{v}_1 \mathbf{v}_2 \ldots \mathbf{v}_n
 \]
- What will graph look like?

Covariance of two random variables

- Height and wake-up time are uncorrelated, but height and weight are correlated.

- Covariance
 \[
 \text{Cov}(X, Y) = 0 \quad \text{for} \ X = \text{height}, \ Y = \text{wake-up times}
 \]
 \[
 \text{Cov}(X, Y) > 0 \quad \text{for} \ X = \text{height}, \ Y = \text{weight}
 \]
 - Definition:
 \[
 \text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]
 \]
 If \(\text{Cov}(X, Y) < 0 \) for two random variables \(X, Y \), what would a scatterplot of samples from \(X, Y \) look like?

Estimating covariance from samples

- Sample \(n \) times:
 \[
 \begin{bmatrix} x_1 \ x_2 \ldots \ x_n \\ y_1 \ y_2 \ldots \ y_n \end{bmatrix}
 \]
 \[
 \text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - m_x)(y_i - m_y)
 \]
 ← maximum likelihood estimate
 \[
 \text{Cov}(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - m_x)(y_i - m_y)
 \]
 ← unbiased estimate
- \(\text{Cov}(X, X) = \text{Var}(X) \)
- How are \(\text{Cov}(X, Y) \) and \(\text{Cov}(Y, X) \) related?
 \(\text{Cov}(X, Y) = \text{Cov}(Y, X) \)

Estimating covariance in Matlab

- **Samples**
 \[
 x = [x_1 \ x_2 \ldots \ x_n] \\
 y = [y_1 \ y_2 \ldots \ y_n]
 \]
- **Means**
 \[
 m_x \leftarrow \bar{x} \quad m_y \leftarrow \bar{y}
 \]
- **Covariance**
 \[
 \text{Cov}(X, Y) = \frac{1}{n} [x_1 - m_x \ x_2 - m_x \ldots \ x_n - m_x] \cdot [y_1 - m_y \ y_2 - m_y \ldots \ y_n - m_y]
 \]
 - Method 1:
 \[
 \mathbf{v} = (1/n) \cdot (x - \bar{x}) \cdot (y - \bar{y})'
 \]
 - Method 2:
 \[
 \mathbf{w} = x - \bar{x} \\
 \mathbf{z} = y - \bar{y} \\
 \mathbf{v} = (1/n) \cdot \mathbf{w} \cdot \mathbf{z}'
 \]

Covariance matrix of a \(D \)-dimensional random vector

- In 2 dimensions
 \[
 \text{Cov}(\mathbf{V}) = E[(\mathbf{V} - \mu)(\mathbf{V} - \mu)']
 \]
 \[
 = E\left[\begin{bmatrix} X - \mu_X \\ Y - \mu_Y \end{bmatrix}[X - \mu_X \ Y - \mu_Y]'
ight] = \begin{bmatrix} \text{Var}(X) & \text{Cov}(X, Y) \\ \text{Cov}(X, Y) & \text{Var}(Y) \end{bmatrix}
 \]
- In \(D \) dimensions
 \[
 \text{Cov}(\mathbf{V}) = E[(\mathbf{V} - \mu)(\mathbf{V} - \mu)']
 \]
- When is a covariance matrix symmetric?
 A. always, B. sometimes, or C. never

Example covariance matrix

- People’s heights (made up)
 \(X \sim N(67, 20) \)
- Time people woke up this morning
 \(Y \sim N(9, 1) \)
- What is the covariance matrix of
 \[
 \mathbf{V} = \begin{bmatrix} X \\ Y \end{bmatrix}
 \]
 \[
 \begin{bmatrix} 20 & 0 \\ 0 & 1 \end{bmatrix}
 \]
Estimating the covariance matrix from samples (including Matlab code)

- Sample \(n \) times and find mean of samples
 \[
 \mathbf{v} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}
 \implies \mathbf{m} = \frac{1}{n} \sum \mathbf{v} = \begin{bmatrix} m_1 \\ m_2 \\ \vdots \\ m_n \end{bmatrix}
 \]

 - Find the covariance matrix
 \[
 \text{Cov} = \frac{1}{n} \begin{bmatrix}
 x_1 - m_1 & y_1 - m_2 \\
 x_2 - m_1 & y_2 - m_2 \\
 \vdots & \vdots \\
 x_n - m_1 & y_n - m_2
 \end{bmatrix}
 \]

 \[
 \begin{align*}
 & \gg m = (1/n) * \text{sum}(v,2) \\
 & \gg z = v - \text{repmat}(m,1,n) \\
 & \gg v = (1/n)*z*z' \\
 \end{align*}
 \]

Gaussian distribution in \(D \) dimensions

- 1-dimensional Gaussian is completely determined by its mean, \(\mu \), and variance, \(\sigma^2 \):
 \[
 X \sim \mathcal{N}(\mu, \sigma^2) \implies p(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
 \]

- \(D \)-dimensional Gaussian is completely determined by its mean, \(\mu \), and covariance matrix, \(\Sigma \):
 \[
 X \sim \mathcal{N}(\mu, \Sigma) \implies p(x) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}
 \]

- What happens when \(D = 1 \) in the Gaussian formula?