Computer Architecture is... ???

- Computer Architect (building architect)
 - high-level design
 - organization
 - functionality
 - performance

- Hardware Designer (builder, construction engineer)
 - materials
 - implementation details

- the first computer science discipline
- Eckert and Mauchly, the first computer scientists, were computer architects, as was John von Neumann and Maurice Wilkes

- Instruction Set Design
- Computer Organization
Why do I care?

• You may actually do computer architecture someday
• You may actually care about software performance someday
 – The ability of application programs, compilers, operating systems, etc. to deliver performance depends critically on an understanding of the underlying computer organization.
 – That becomes more true every year.
 – Computer architectures become more difficult to understand every year.

The Forces on Computer Architecture

Technology

Parallelism

Programming

Languages

Applications

Computer Architecture:
• Instruction Set Design
• Hardware Organization

Operating Systems

History

What is Computer Architecture?

Computer Architecture =
Machine Organization +
Instruction Set Architecture

What the machine looks like

How you talk to the machine

Administration

• Who are you?
• Who am I?
• syllabus, other details
The Instruction Set Architecture

- that part of the architecture that is visible to the programmer
 - opcodes (available instructions)
 - number and types of registers
 - instruction formats
 - storage access, addressing modes
 - exceptional conditions

Examples of ISAs

- Alpha AXP
- Intel 80x86/pentium*/IA32
- Intel IA64/Itanium
- VAX
- MIPS
- SPARC
- IBM 360
- PowerPC
- ...

The Instruction Set Architecture

- ISA provides a level of abstraction for both the hardware and the software

Computer Organization

- Once you have decided on an ISA, you must decide how to design the hardware to execute those programs written in the ISA as fast as possible.
- This must be done every time a new implementation of the architecture is released, with typically very different technological constraints.
The Challenge of Computer Architecture

- This industry changes faster than any other.
- The ground rules change every year.
 - new problems
 - new opportunities
 - different tradeoffs
- It’s all about making programs run faster than the next guy’s machine.
Course Outline

I. Introduction
II. Computer System Performance
III. Instruction Set Architecture
IV. Pipelining
V. Instruction-Level Parallelism
VI. The Memory/Cache Hierarchy
VII. Parallel Machines

What you can expect to get out of this class

- to become conversant with computer architecture terms and concepts.
- to understand fundamental concepts in computer architecture and how they impact computer and application performance.
- to be able to read and evaluate architectural descriptions of even today’s most complex processors.
- to learn experimental techniques used to evaluate advanced architectural ideas. In other words, to do architecture research!

Key Points

- Computer Architecture defines the software-visible machine description (ISA) and the overall machine organization.
- High-performance software requires a deep understanding of the underlying machine organization.
- The instruction set architecture defines how software is allowed to use the processor. Multiple computers with vastly different organizations and performance can share an ISA.