RNA multiple alignment
Project

• Please email a 3 page description by Thursday. It should include the definition of the problem.

• Each proposal will be reviewed by another classmate. It must be clear enough to a non-specialist.

• It should contain
 - Problem definition, motivation
 - Proposed methodology
 - A test plan, and some test data sets
RNA multiple alignments

• Why should we compute multiple (structural) alignments for RNA?
Structural Alignment

Conserved sequences, and conserved structure are more apparent in multiple alignments.
Computing Structural Alignments

- Analogy: In sequence alignment, the score for aligning a column is position independent.
- In profiles, or HMMs, position specific scoring is used to distinguish conserved positions from non-conserved positions.
- Similar ideas can be used for RNA.

\[\Pr(G|1) = 0.8 \]
Covariance models=RNA profiles
Aligning a sequence to a covariance model

• We align each node of the covariance model (it is tree like, but may be a graph).
• The alignment score follows the same recurrence as in Lecture 7, but with position specific probabilities.
• Example:
 - \(A[W_{i,(i,j)}] = -\log (\Pr[W_i\rightarrow s[i] W_j s[j]] + A[W_{j,(i+1,j-1)}] \)
• If we wish to compute the probability that a sequence belongs to a family, we compute the total likelihood (sum over all probabilities)
• If we wish to compute the structure of an unknown sequence by comparison to a covariance model, we compute the max likelihood parse in this graph.
Covariance models and ncRNA discovery

- Given a family of ncRNA sequences, scan a genomic sequence with a covariance model and retrieve all high scoring sub-sequences.
- This is the most common method, but it is expensive.
- Assume covariance model has \(m \) states, and the substring has at most \(n \) symbols, and the database has \(L \) symbols.
- Alignment cost = \(O(n^2m_1+n^3m_2) \)
- Total time =?
Computing covariance models

- If we are given a CM, a multiple structural alignment is 'easy'.
 - In turn, align each sequence to the CM.
- If we are given a multiple alignment, computing the covariance model is easy.
- For simultaneous prediction, a Bayesian iterative approach is used
 - Compute a seed alignment
 - Use the alignment to compute a CM
 - Use the CM to compute a new alignment
 - Iterate
Project

- Compute an RNA multiple alignment.
- Existing methods do not work well without good seed alignment, and require excessive hand curation.
ncRNA discovery for specific families
Case study: miRNA

- dsRNA, and siRNA can be used to silence genes in mammalian tissue culture.
- miRNA is a new member of this class of endogenous interfering RNA
- RNA interference (RNAi) is a powerful new technique to study gene function.
Case Study: miRNA

- ncRNA ~22 nt in length
- Pairs to sites within the 3’ UTR, specifying translational repression.
- Similar to siRNA (involved in RNAi)
- Unlike siRNA, miRNA do not need perfect base complementarity
- No computational techniques to predict miRNA
 - Most predictions based on cloning small RNAs from size fractionated samples
miRNA (vs. siRNA)

• Derived from transcripts that form local hairpin structures.
• Sequences of the precursor, and processed miRNA is evolutionarily conserved.
• Usually distinct, and distant, from other genes.
• siRNA (by contrast)
 • Not evolutionarily conserved
 • Correspond to sequences of known or predicted mRNAs, transposons, or regions of heterochromatic DNA.
MiRscan

- Predicts miRNA
- Start with evolutionarily conserved region. Ex: *C. elegans* and *C. briggsae*
- 36000 hairpins were found (including 50/53 known miRNA).
- 50 known miRNA were used to train and score the 36000 hairpins
Computational identification of miRNA

- 7 features are scored
 1. miRNA base-pairing
 2. Base-pairing of the rest of the fold-back
 3. Stringent sequence conservation in the 5' end of fold back
 4. Sequence conservation in the 3' end of fold back
 5. Sequence bias in the first 5 bases of miRNA
 6. Tendency to form symmetric internal loops
 7. Presence of 2-9 consensus base-pairs between miRNA and terminal loop region

- Red: Conserved with C. briggsae
- Blue: varying residues that maintain their predicted paired or unpaired states
• 35 previously unannotated hairpins exceeded the Median score
Molecular identification of miRNA

• Initial cloning and sequencing identified 300 clones representing 54 unique miRNA
• 10 fold scale up of the procedure identified 3423 clones as miRNA. These contain 77 distinct miRNA genes
• 77-54=23 novel miRNAs found
• 20 were scored by MiRscan (yellow). 10 were among the top 35
MiRscan results

• 35 Predictions
• 10 identified with a high throughput screen (sequencing of 3423 clones)
• 6 identified using a PCR assay.
• 4 identified as false positives PCR hybridized to larger ncRNAs
• 15 unknown
• Evolutionary conservation is important for ncRNA detection
 • >97% of all miRNA had significant conservation between C. briggsae, and C. elegans
ncRNA summary

• ncRNA, once forgotten, is increasingly important.
• Evolutionarily conserved structural elements are key to discovery and annotation.
• Special algorithms can help for specific families