CSE 123A
Computer Networks

Winter 2005

Lecture 8:
IP Router Design
Overview

- Router basics
- Interconnection architecture
 - Input Queuing
 - Output Queuing
 - Virtual output Queuing
 - Scheduling
- Future bottlenecks
- Case Studies
What’s in a router?

- Physical components
 - One or more input interfaces that receive packets
 - One or more output interfaces that transmit packets
 - A chassis (box + power) to hold it all

- Functions
 - Forward packets
 - Drop packets (congestion, security, QoS)
 - Delay packets (QoS)
 - Transform packets? (Encapsulation, Tunneling)
What a router does: the normal case

- Receive incoming packet from link input interface
- Lookup packet destination in forwarding table
 - (destination, output port(s))
- Validate checksum, decrement ttl, update checksum
- Buffer packet in input queue
- Send packet to output interface (interfaces?)
- Buffer packet in output queue
- Send packet to output interface link
What a router looks like?

Cisco 2500

1.75”

19”

Capacity: <10Mbps

Linksys DEFSR81

8”

Capacity: <10Mbps
What a router looks like (2)

Cisco GSR 12416
- Capacity: 160Gb/s
- Power: 4.2kW
- Dimensions: 6ft x 2ft x 2ft

Juniper M160
- Capacity: 80Gb/s
- Power: 2.6kW
- Dimensions: 2.5ft x 2ft x 3ft
Alcatel 7670 RSP

Avici TSR

Capacity: nTb/s
Power: 10s of kW (~100's of homes)

Juniper TX8/T640

TX8

Chiaro

Capacity: nTb/s
Power: 10s of kW (~100's of homes)
High-performance routers

- Geared to core and distribution service needs
 - Requirements: high speed & high density
- Why do we care?
 - Moore’s Law slower than link speed growth (and BW demand)
 - OC48c (2.5Gbps), now, 128ns/packet
 - OC192c (10Gbps), in deployment, 33ns/packet
 - OC768c (40Gbps), 2005-7, 8ns/packet
 - Need high density/low power for POP deployments
 - Points-of-Presence (POP) – places where a network service provider provides dense connectivity
 - $20-100k & 2-400W per port, 50% ports frequently for internal connectivity (why?)
Functional architecture

Control Plane
- Complex
- Per-control action
- May be slow

Data plane
- Simple
- Per-packet
- Must be fast
Interconnect architecture

- Input & output connected via switch fabric
- Kinds of switch fabric
 - Bus
 - Crossbar
 - Shared Memory
- How to deal with transient contention?
 - Input queuing
 - Output queuing
 - Combination
First Generation Routers

- Single CPU and shared memory;
- All classification by main CPU
Second Generation Routers

- CPU
- Route Table
- Line Card
- Buffers
- Forwarding Cache
- MAC

Shared Bus(s)

Direct DMA on cache hit

Cache of recent routes
Third Generation Routers

- Shared interconnect (usually crossbar)
- Centralized scheduler
- Full forwarding table in line card
- Fixed cells

Diagram:
- Switch Fabric
 - Shared interconnect (crossbar)
 - Centralized scheduler
- Line Card
 - Buffers
 - Forwarding Table
 - MAC
- CPU Card
 - CPU
 - Routing Table
- Line Card
 - Buffers
 - Forwarding Table
 - MAC
Output queuing

- Output interfaces buffer packets

- Pro
 - Simple algorithms
 - Single congestion point

- Con
 - N inputs may send to the same output
 - Requires speedup of N
Input queuing

- Input interfaces buffer packets
- Pro
 - Single congestion point
 - Simple to design algorithms
- Con
 - Must implement flow control
 - Low utilization due to Head-of-Line (HoL) Blocking
 » Utili limited to $2 - 2^{0.5} = 58\%$
Head-of-Line Blocking
Virtual Output Queues
IQ + Virtual Output Queuing

- Input interfaces buffer packets in per-output virtual queues

- Pro
 - Solves blocking problem

- Con
 - More resources per port
 - Complex arbiter at switch
 - Still limited by input/output contention (scheduler)
 - RR: $1/e = 63\%$
Switch scheduling

- Problem
 - Match inputs and outputs
 - Resolve contentions, no packet drops
 - Maximize throughput
 - Do it in constant time…

- If traffic is uniformly distributed its easy
 - Lots of algorithms (approximate matching)

- Recent result (Dai et al, 2000)
 - Maximal size matching + speedup of two guarantees 100% utilization for most traffic assumptions
Modern high-performance router

- IQ + VoQ + OQ
 - Speedup of 2
 - Central scheduler
 - Fixed-sized internal cells
- Pro
 - Can achieve utilization of 1
 - Can scale to > Tb/s
- Con
 - Multiple congestion points
 - Complexity
Next bottlenecks

- Buffering at high speed
 - SRAM density too low for BW*D of 40Gbps link
 - DRAM too slow
 - SRAM memory management as cache for DRAM

- Scheduler overhead
 - Hard to do central scheduler much over 1Tbps
 - Multi-stage load-balanced switches

- High density (100’s-1000’s of line cards)
 - Physical distance to support density; electrical links degrade
 - Optical links; optical cross connect (MEMs, tunable lasers)

- Time to market, Power/Heat
Conclusion

- It is feasible to build very high speed IP routers
 - 40Gbps link speeds
 - Multi Tbps aggregate capacity
- But…
 - Limited programmability
 - High complexity, slow time to market
 - Juniper I2 ASIC 2.5M gates
 - Typical OC192 LC ~30M gates!
 - Starting to require significant on-chip SRAM
 - Next gen (OC3072 160Gbps LC) may be close to cross-over point for CMOS (luckily, not clear there is demand)
For next time...

- Routing… how to get a packet from here to there.

- Read: 4.2 – 4.2.2