Photometric Stereo Recap

Computer Vision I
CSE252A
Lecture 8a

Announcements

- HW1 due on 2/4 (wed, not Tuesday.
- HW2 will be posted shortly, written assignment.
- Class web board available at:
 – http://www.etalonsoft.com/cse252a
 Thanks Louka.

Coordinate system

Photometric Stereo

\[f(x, y) = (x, y, f(x, y)) \]

Tangent vectors:

\[\mathbf{T} \]

Normal vector

\[\mathbf{n} = \frac{\partial f}{\partial y} \times \frac{\partial f}{\partial x} \]

Reflectance map

For known BRDF, fix light source direction/strength and projection direction
1. Then image irradiance is a function of only the direction of the surface normal.
2. In gradient space, we have \[\mathbf{E}(p, q) \] which is known as the reflectance map

\[\mathbf{n} = (p, q, -1)^T \]
Reflectance Map of Lambertian Surface

What does the value of one pixel in one image tell us?
It constrains normal to a curve

Isophote
Normal lies on this curve

Two Light Sources
Two reflectance maps

Third image would disambiguate match

Recovering the surface \(f(x,y) \)

Many methods: Simplest approach
1. From estimate \(\mathbf{n} = (n_x, n_y, n_z) \), \(p = n_x / n_z \), \(q = n_y / n_z \)
2. Integrate \(p = df/dx \) along a row \((x,0)\) to get \(f(x,0) \)
3. Then integrate \(q = df/dy \) along each column
 starting with value of first row

\(f(x,0) \)

What might go wrong?

• Height \(z(x,y) \) is obtained by integration along a curve
 from \((x_0, y_0)\).
 \[
 z(x, y) = z(x_0, y_0) + \int_{(x_0, y_0)}^{(x, y)} (pdx + qdy)
 \]

• If one integrates the derivative field along any closed curve,
 on expects to get back to the starting value.
• Might not happen because of noisy estimates of \((p, q)\)

Integrability

If \(f(x,y) \) is the height function, we expect that

\[
\frac{\partial f}{\partial y} = \frac{\partial f}{\partial x}
\]

In terms of estimated gradient space \((p,q)\), this means:

\[
\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}
\]

But since \(p \) and \(q \) were estimated
independently at each point as intersection
of curves on three reflectance maps,
equality is not going to exactly hold

II. Photometric Stereo:
Lambertian Surface,
Known Lighting
Lambertian Surface

At image location (u,v), the intensity of a pixel $x(u,v)$ is:
\[e(u,v) = [a(u,v) \cdot n(u,v)] \cdot [s_0^T \cdot s] \]
where
- $a(u,v)$ is the albedo of the surface projecting to (u,v).
- $n(u,v)$ is the direction of the surface normal.
- s_0 is the light source intensity.
- s is the direction to the light source.

Lambertian Photometric stereo

- If the light sources s_1, s_2, and s_3 are known, then we can recover b from as few as three images. (Photometric Stereo: Silver 80, Woodham 81).

\[[e_1 \ e_2 \ e_3] = b^T [s_1 \ s_2 \ s_3] \]

- i.e., we measure e_1, e_2, and e_3, and we know s_1, s_2, and s_3. We can then solve for b by solving a linear system.

\[b^T = [e_1 \ e_2 \ e_3] [s_1 \ s_2 \ s_3]^{-1} \]

- Normal is: $n = b/|b|$, albedo is: $|b|$

What if we have more than 3 Images?
Linear Least Squares

\[[e_1 \ e_2 \ e_3] = b^T [s_1 \ s_2 \ s_3] \]

Let the residual be $r = e - Sb$

Rewrite as $e = Sb$

where
- e is n by 1
- b is 3 by 1
- S is n by 3

Squaring this:

\[r^T r = e^T e - 2b^T S e + b^T S^T S b \]

\[(r^T r)_{xx} = 0 \]

i.e., we measure e_1, e_2, and e_3, and we know s_1, s_2, and s_3. We can then solve for b by solving a linear system.

Solving for b gives

\[b = (S^T S)^{-1} S^T e \]

Input Images

Recovered albedo

Recovered normal field
Surface recovered by integration