Why is it hard?

1. Each Scene is a dynamical system.
2. Objects interact with their environments.
3. The presence of a new object changes the energy balance in the scene.
4. The problem is under constrained.
Direct Illumination
Global Illumination
The Solution

- The Distant Scene
- The Local Scene
- The Synthetic Objects
Distant Scene

- A Model of incoming light.
- Contributes direct illumination only.
- The reflections in the scene do not affect the distant illumination.
- Modelled using a environment map.
Local Scene

- A model of the local geometry of the scene.
- A model of the local reflectance in the scene estimated from the scene or prior knowledge.
- Contributes direct as well as indirect illumination to the synthetic objects.
Synthetic Objects

- A model of the geometry of the objects
- A model of the reflectance of the object
The Method

- Capture the distant illumination in the scene.
- Measure the local BRDF.
- Model the synthetic objects and the local geometry.
- Render the objects and the local scene using full global illuminations.
- Composit into the original scene using differential rendering.
Anatomy of a light source

- What is a light source?
- What is the space of all light sources?
- How can we move about in this space?
Radiance
Radiance is the amount of energy per unit time per unit solid angle per unit area in the direction of travel.

or

The number of photons striking a point from a particular direction per second.

Radiance remains constant along a line in free space.
Definitions

Free Space (\mathcal{F})
A bounded, open connected subset of 3d euclidean space. $\partial \mathcal{F}$ is the boundary of \mathcal{F}.

Set of rays ($\mathcal{M}(\mathcal{F})$)
The set of all closed directed lines $[x_1, x_2]$ s.t.

1. $x_1 \neq x_2$
2. $x_1, x_2 \in \partial \mathcal{F}$
3. The line joining x_1 and x_2 is contained entirely in \mathcal{F}.
Ray Manifold

Given a \(z_0 \), let \(r \) be a ray which passes through \(x_0 = \{x_0, y_0, z_0\} \), in the direction \((p_0, q_0, 1) \), then we make the association

\[
 r \rightarrow (x_0, y_0, p_0, q_0)
\]

Ray Manifold : Given a free space \(\mathcal{F} \), the set of rays \(\mathcal{M}(\mathcal{F}) \) is a 4-D manifold

Illumination: The Why, the What and the How – p.13/49
Ray Manifold

\[R : \mathcal{M} \rightarrow [0, \infty) \]

\(R \) is the radiance along a ray \(r \). Radiance remains constant along in a line in free space.

\[R_{z_0}(x_0, y_0, p_0, q_0) = R_{z_1}(x + (z_1 - z_0)p_0, y_0 + (z_1 - z_0)q_0, p_0, q_0) \]
The Lightsource Hypercube

Given a plane P_{z_0}, consider the set of rays

$$\mathcal{M} = (x, y, p, q) : \begin{align*}
x &\in \left[\frac{h_x}{2}, \frac{h_x}{2} \right], \\
y &\in \left[-\frac{h_y}{2}, \frac{h_y}{2} \right], \\
p &\in \left[-\frac{h_p}{2}, \frac{h_p}{2} \right], \\
q &\in \left[-\frac{h_q}{2}, \frac{h_q}{2} \right] \end{align*}$$

each having uniform radiance, $R(h_x, h_y, h_p, h_q)$.

Illumination: The Why, the What and the How – p.15/49
Some integration shows that the radiant flux from this set of rays is

\[\Phi = h_x h_y R(h_x, h_y, h_p, h_q) \int_{-h_p/2}^{h_p/2} \int_{-h_q/2}^{h_q/2} \frac{dp dq}{(1 + p^2 + q^2)^2} \]

set

\[R(h_x, h_y, h_p, h_q) = \frac{1}{h_x h_y} \left[\int_{-h_p/2}^{h_p/2} \int_{-h_q/2}^{h_q/2} \frac{dp dq}{(1 + p^2 + q^2)^2} \right]^{-1} \]

so that

\[\Phi = 1 \]
Let $I(\cdot)$ denote the indicator function on the interval $[-1/2, 1/2]$. A uniform cubic source of unit flux centered at position $(0, 0, z_0)$ is a source with the radiance function

$$R_{z_0}(x, y, p, q) = R(h_x, h_y, h_p, h_q)I\left(\frac{x}{h_x}\right)I\left(\frac{y}{h_y}\right)I\left(\frac{p}{h_p}\right)I\left(\frac{q}{h_q}\right)$$

The set of all light sources can now be obtained by restricting the coordinates in various manners.
Light Sources

<table>
<thead>
<tr>
<th>Real Source</th>
<th>Ideal model</th>
<th>h_x</th>
<th>h_y</th>
<th>h_p</th>
<th>h_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcast Sky</td>
<td>Uniform Source</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Laser</td>
<td>Single Ray</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fluorescent Tube</td>
<td>Linear Source</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Sunlight</td>
<td>Directed Point Source</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Light Sources

<table>
<thead>
<tr>
<th>Real Source</th>
<th>Ideal model</th>
<th>(h_x)</th>
<th>(h_y)</th>
<th>(h_p)</th>
<th>(h_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louveres</td>
<td>Fan of rays</td>
<td>(\infty)</td>
<td>0</td>
<td>0</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Small Panel Light</td>
<td>Point Source</td>
<td>0</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Light through crack</td>
<td>Parallel Rays</td>
<td>(\infty)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rotating spotlight</td>
<td>Fan of rays</td>
<td>0</td>
<td>0</td>
<td>(\infty)</td>
<td>0</td>
</tr>
</tbody>
</table>
Source Rays

That minimal subset $\mathcal{M}_{src} \subseteq \mathcal{M}(\mathcal{F})$, s.t. if they are removed, the radiance on the manifold $\mathcal{M}(\mathcal{F})$ would be identically zero.
Radiance Map

St. Peter’s Basilica

An omni-directional, high dynamic range image that records the incident illumination conditions at a particular point in space.
Real Pixels are floats

\[I = \frac{L \pi}{4} \left(\frac{d}{h} \right)^2 \cos^4 \phi t \]
\[= LP e \]

\(L \): Scene Radiance
\(e = \frac{\pi d^2}{4} t \): exposure.

There is no bound on the magnitude of \(I \).
The radiometric response function

\[M = f(I) \]

- \(M \) is the observed image brightness.
- \(M \) is bounded with finite dynamic range.
- Estimating \(I \) requires estimating \(g = f^{-1} \).
Estimating g

- Use multiple exposures to estimate g.
- Non-Parametric Regression - Debevec & Malik
- Parametric Regression - Mitsunaga & Nayar
The range of f is discrete and finite.

- f is monotonic and smooth.

\[
M_{i,j} = f(I_{i,j}) \quad (3)
\]
\[
g(M_{i,j}) = I_{i,j} \quad (4)
\]
\[
g(M_{i,j}) = L_i P_i e_j \quad (5)
\]
\[
\log g(M_{i,j}) = \log L_i + \log P_i + \log e_j \quad (6)
\]
Non-Parametric Regression

\[\mathcal{O} = \sum_{i} \sum_{j} \left[g(M_{i,j}) - \log L_i P_i - \log e_j \right]^2 + \lambda \sum_{z} g''(z)^2 \]

\[g''(z) = g(z - 1) - 2g(z) + g(z + 1) \]
Assume a flexible polynomial model.

Perform regression to estimate the parameters of the model.

\[I_{i,j} = g(M_{i,j}) = \sum_{n=0}^{N} c_n M_{i,j}^n \]
\[
\frac{I_{i,j}}{I_{i,j+1}} = \frac{L_i P_i e_j}{L_i P_i e_{j+1}} = R_{q,q+1} = \frac{g(M_{i,j})}{g(M_{i,j+1})}
\]

\[
\mathcal{O} = \sum_i \sum_j \left[\sum_n c_n M_{i,j}^n - R_{j,j+1} \sum_n c_n M_{i,j+1}^n \right]^2
\]

and

\[
\sum_n c_n = I_{max}
\]
Re-estimating Exposure Ratios

\[R_{j,j+1}^{(k)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\sum_n c_n^{(k)} M^n_{i,j}}{\sum_n c_n^{(k)} M^n_{i,j+1}} \]
Calculating the HDR Image

\[\log I_i = \frac{\sum_j w(M_{i,j})(g(M_{i,j}) - \log e_j)}{\sum_j w(M_{i,j})} \]

\[w(z) = \begin{cases}
 z - Z_{\text{min}} & \text{for } z \leq \frac{1}{2}(Z_{\text{min}} + Z_{\text{max}}) \\
 Z_{\text{max}} - z & \text{for } z > \frac{1}{2}(Z_{\text{min}} + Z_{\text{max}})
\end{cases} \]

\[w(z) = \frac{g(z)}{g'(\bar{z})} \]
Estimating g: a second look

\[M_A = f(I_A) = f(LP e_A) \]

\[M_B = f(I_B) = f(LP e_B) \]

\[\frac{I_A}{e_A} = \frac{I_B}{e_B} = LP \]

or

\[g(M_B) = kg(M_A), \quad k = \frac{e_B}{e_A} \]
Brightness Transfer Function

\[M_B = T(M_A) = g^{-1}(kg(M_A)) \]

The brightness transfer function relates the brightness change from one image to the other as the exposure changes.
Properties of T

If g is smooth and monotonically increasing with a smooth inverse. $g(0) = 0$, $g(1) = 1$ and $k > 1$, then

- T is monotonically increasing.
- $T(0) = 0$
- $T(M) \geq M$
- $\lim_{n \to \infty} T^{-n}(M) = 0$
Fractal Ambiguity

\[g(T(M)) = kg(M) \]

if \(T(M) \in [a, b] \), then the above equation relates \(g([a, b]) \leftrightarrow g([T^{-1}(a), T^{-1}(b)]) \)

in the case of \([a, b] = [T^{-1}(1), 1] \), it is

\[g([T^{-1}(1), 1]) \leftrightarrow g([T^{-2}(1), T^{-1}(1)]) \]

\[g([T^{-n}(1), T^{-(n-1)}(1)]) \leftrightarrow g([T^{-(n+1)}(1), T^{-n}(1)]) \]
The above equations constrain the behaviour of g on $[0, T^{-1}(1))$.

The behaviour on $[T^{-1}(1), 1]$ is underconstrained.

We can choose an arbitrary smooth monotonic function s, s.t $s(1) = 1$, and $s(T^{-1}(1)) = 1/k$ and extend it to a solution g.

Debevec & Malik solved the ambiguity by imposing a smoothness constraint.

Mitsunaga & Nayar constrained the solution to be a polynomial.
Exponential Ambiguity

What if, k as well as g are both unknown?

\[
g(T(M)) = kg(M) \\
[g(T(M))]^\gamma = [kg(M)]^\gamma \\
g^\gamma(T(M)) = k^\gamma g^\gamma(M)
\]

Hence is (g, k) is a solution then $(g^\gamma, k^\gamma), \gamma > 0$ is also a solution.

g and k cannot be jointly estimated.
Recovering the Exposure Ratio

It is possible to recover the exposure ratio of two images without knowing the response function g.

$$g(T(M)) = kg(M) \quad (7)$$

$$g'(T(M))T'(M) = kg'(M) \quad (8)$$

If $g'(0) \neq 0$, then

$$k = T'(0)$$

What happened to the exponential ambiguity?
Estimation without registration

- Previous approaches were based on exact pixel correspondences.
- Difficult getting data which is perfectly aligned.
- Is it possible to recover the transfer function without exact pixel correspondence?
Estimation without registration

H_A and H_B are empirical distribution functions of image brightness values.

$H_A(u) = \# \text{ of points in } A \text{ with brightness less than or equal to } u.$

Hence,

$H_B(T(u)) = \# \text{ of points in } B \text{ with brightness less than or equal to } T(u)$

$= \# \text{ of points in } A \text{ with brightness less than or equal to } u.$

$$H_B(T(u)) = H_A(u)$$

$$T(u) = H_B^{-1}(H_A(u))$$
Back to inserting objects
Estimating local scene BRDF

1. Assume reflectance model.
2. Render the local scene.
3. Compare computed with actual.
4. Adjust parameters of reflectance model.
5. Goto 2.
Differential Rendering

1. Render the local scene L_{local}
2. Calculate difference between the actual and the computed.
 \[L_{error} = L_{actual} - L_{local} \]
3. Render the local scene with the synthetic objects L_{object}
4. Composit using the error.
 \[L_{final} = L_{actual} + (L_{object} - L_{error}) \]
References

- Michael S. Langer & Steven W. Zucker What is a light source?
- Paul Debevec & Jitendra Malik Recovering High Dynamic Range Radiance Maps from Photographs
- Tomoo Mitsunaga & Shree K. Nayar Radiometric Self Calibration
- Michael D. Grossberg & Shree K. Nayar What can be Known about the Radiometric response from Images?
- Paul Debevec Rednering Synthetic Objects into Real Scenes: Bridging Traditional and Image-based Graphics with Global Illumination and High Dynamic Range Photography
Acknowledgements

- The music of KSDT (UCSD’s own radio station) for keeping me company.