Patch-Based Texture Synthesis in 2D and 3D

Presented by Junwen Wu
CSE291-J
Feb. 27, 2003
Introduction to Texture Synthesis

• Problem Description

Given: an input texture sample image I_{in}
Target: an unlimited amount of image data I_{out}, which is perceived by the human observer as the same texture

Picking the right set of statistics to match
Finding an algorithm to match them
Introduction to Texture Synthesis

• Two classes of textures
 Stochastic Texture V.S. Structured Texture

• Histogram matching
• Conditional distribution preserving under multi-scale
• Patch pasting
• Pixel-wise non-parametric sampling

• Pixel-wise non-parametric sampling
 Greedy strategy, Slow

Patch-based Texture Synthesis
Patch-based Texture Synthesis in Images

 (Image Quilting)

 (Microsoft Paper)
Basic Idea

input texture

block

random placement of blocks

B1 B2

neighboring blocks constrained by overlap
Basic Idea

Image Quilting: Minimum Error Boundary cut:

Microsoft Paper: Image Feathering (blending):

- Be performed along seams
- Makes the sharp changes occurring at the cut line appear more gradual
Minimum Error Boundary Cut:

\[
E_{ij} = \begin{cases}
 e_{ij}, & i = 1 \\
 e_{ij} + \text{Min}\{E_{i-1,j-1}, E_{i-1,j}, E_{i-1,j+1}\}, & i > 1
\end{cases}
\]

minimum of last row
Image Feathering:

\[P_{out}(i, j) = \alpha_{ij} P_{in}(i, j) + (1 - \alpha_{ij}) P_{Match}(i, j) \]

• Using \(\alpha_{ij} \) to control the blending effect

• One possible criterion to select \(\alpha_{ij} \) is by their distance to the cutting line
How to choose the matching patch:

- **Image Quilting:** The most similar patch in the input image, which is defined as:

\[
B_{opt} = \arg \min_{B_{in}} \{ dist(\partial B_{in}, \partial B_{out}), B_{in} \in I_{in} \},
\]

\(\partial B_{in} \) and \(\partial B_{out} \) are the overlapped region in the patch \(B_{in} \) and \(B_{out} \).

- **Microsoft Paper:** Randomly select from the set \(S_{\text{Match}} \); In case \(S_{\text{Match}} = \emptyset \), select the most similar patch

\[
S_{\text{Match}} = \{ B_{in} : dist(\partial B_{in}, \partial B_{out}) < d_{\text{max}} \}
\]

\[
d_{\text{max}} = \epsilon \left(\frac{1}{A} \sum_{i,j} (P_{out}(i,j))^2 \right)^{\frac{1}{2}},
\]

\(P_{in/out}(i,j) \in \partial B_{in/out} \), \(A \) is the area of \(\partial B_{in/out} \).
Common Parameters in Both Approaches:

- **Patch size:** Smaller means more matching possibility, yet weaker statistical constraint.

 From left to right: I_{in}, I_{out} by patch size 16x16, 24x24, 32x32.

- **Width of Overlapped Band:** Wider band implies stronger statistical constraints, yet less matching possibilities.
More Parameters in Microsoft Paper:

- **Distance tolerance** d_{max} (*Controlled by ε*):
 Control the similarity between the synthesis texture and the input texture.

 Smaller ε: More similarity in local structures;
 Greater ε: Discontinuous transition between patches

From left to right: I_{in}, I_{out} with $\varepsilon=0$, 0.2, 1 respectively
Three Steps of Accelerating Technique----

Step 1:

- Optimized KD-tree for the data-points
Three Steps of Accelerating Technique----
Step 1 (Contd.):

- Optimized KD-tree for the data-points
 - Partition the data-space into hypercubes by axis-orthogonal hyperplanes
 - Node: hypercubes enclosing a set of data-points
 - Construction rule: Sliding mid-point rule *V.S.* standard KD-tree splitting rule
 ✫ Both will produce cubes with high-aspect ratio
 ✫ High aspect ratio will increase error
 ✫ Sliding mid-point rule can prevent it from causing problems
Three Steps of Accelerating Technique----

Step 2:

• **Quadtree Pyramid---**Take advantage of image data

 - Calculated over I_{in}; all other data-points can be extracted from filtered I_{in};
 - At every level, four children (higher level images) are computed over images with different shifting along x- and y- directions.
 - Compare with Gaussian Pyramid: Same: reduce (Smoothing+sub-sampling) and expand (interpolating); different: Gaussian pyramid cannot always find the corresponding pixel in the higher level to the lower level patches.
Three Steps of Accelerating Technique----Step 3:

- PCA---Data dimension reduction
 - A lower dimension representation
 - Expanded by the first several eigenvectors of the covariance matrix
Results from Liang’s paper
From left the right:
Input sample texture images;
Synthesized texture from Liang’s approach;
Synthesized texture from Efros and Freeman’s approach
Texture Transfer

input images

quilting results
Texture Transfer

- Image quilting is suitable for it: image quilting is based on local image information.
- A desired \textit{correspondence map} should be satisfied as well as the texture synthesis requirement.
- \textit{Correspondence map} (C(\cdot)):

\begin{align*}
\tilde{e}_{ij} &= \alpha (P_{in}(i, j) - P_{out}(i, j))^2 + (1 - \alpha) (C(P_{in}(i, j)) - C(P_{out}(i, j)))^2
\end{align*}
Results of Image Transfer:

Correspondence map:
Luminance value

Correspondence map:
Blurred Luminance value
QUESTIONS?