Syllabus for CSE 167, Winter 2003

Instructor: Dr. Farhana Bandukwala

1. Introduction to basic raster graphics
 Lecture 1: Intro to graphics
 a) Historical perspective
 b) Graphics vs Vision
 c) Applications of graphics
 d) Introduction to OpenGL
 Lecture 2: Concepts of raster graphics
 a) Raster vs vector: pixels vs strokes
 b) Advantages & Disadvantages:
 c) Algorithms
 d) Bit and pixel operations in OpenGL
 Lecture 3: Graphics system
 a) Input and Output devices
 b) Random scan display processor
 c) Pipeline architecture
 d) Client Server model
 Assignment 1 handed out

2. Geometry and Transformations
 Lecture 4: User Interfaces
 a) Goals
 b) Styles
 c) Design considerations
 d) User Interface Management system
 Assignment 1 due beginning of class
 Lecture 5: 2D Geometrical Objects & transformations
 a) Geometrical Objects
 b) Operations
 c) Homogeneous coordinates and matrix representation of transformations
 Lecture 6: OpenGL objects and transformations
 a) Primitives in OpenGL
 b) World coordinate system
 c) Screen coordinate
 d) OpenGL transformation matrices

3. Curves
 Lecture 7: Parametric Polynomials
 a) Explicit vs Implicit representation
 b) Linear approximations
 c) Parametric form
 d) Polynomial cubic curves
 Assignment 1 due beginning of class
 Lecture 8: Types of cubics
 e) Hermites, Beziers and BSplines
4. Three dimensional rendering
 Lecture 9: Three dimensional objects and transformations
 a) Geometrical objects
 b) Coordinate systems and transformations
 c) Matrix representation of 3D transformations
 d) Composite transformations
 Lecture 10: Projections
 a) Perspective projections
 b) Parallel projection
 c) Camera position
 d) Clipping planes
 Lecture 11: Surfaces
 a) Linear representations: Polygon meshes
 b) Parametric bicubic surfaces
 c) Subdivision Surfaces
 Lecture 12: Rendering in Open GL
 a) View setup:
 b) Projections in Open GL
 c) Surfaces in Open GL

5. Illumination
 Lecture 13: Light sources
 a) Achromatic
 b) Colored light
 c) Illumination models
 Assignment 2 due beginning of class
 Lecture 14: Surface shading
 a) Reflection models
 b) Computational issues
 c) Polygon shading
 Assignment 3 handed out
 Lecture 15: Illumination and Shading in OpenGL
 a) Specifying light sources
 b) Material properties
 c) Texture mapping
 d) Transparency

6. Hidden surface removal
 Lecture 16: General concepts
 a) Functions of two variables and horizon line algorithm
 b) Techniques for efficient algorithms
 Lecture 17: Image space algorithms
 a) Painter’s algorithm
 b) Z Buffer algorithm
c) A Buffer algorithm
d) Z-buffers in Open GL
Lecture 18: Object space algorithms
 a) Depth sort algorithm
 b) BSP trees
 c) Octree-based algorithms

7. Object hierarchy
 Lecture 19: General concepts and tree structures
 a) Uses for object hierarchy
 b) Trees and DAGs
 Assignment 3 due beginning of class
Lecture 20: Scene graphs in OpenGL
 a) Geometry nodes
 b) Camera
 c) Lights and materials
 d) Transformations
 e) Display Lists
 Assignment 4 handed out

8. Animation
 Lecture 21: Basic concepts
 a) Animatable parameters
 b) Conventional vs computer-based
 Lecture 22: Languages
 a) Linear list notations
 b) General purpose
 c) Graphical animation languages
 d) Controlling animation
 Lecture 23: Animation tricks in OpenGL
 a) Problems:
 b) General rules:
 c) Implementation in OpenGL
 d) Hardware-based animation: sprites

9. Graphics pipeline
 Lecture 24: Standard graphics pipeline revisited
 a) Front end vs back end
 b) Performance barriers
 c) Multiprocessor architectures
 d) Unique architectures

10. Advanced topics
 Lecture 25: Raytracing
 Lecture 26: Radiosity
 Lecture 27: Volume visualization
 Assignment 4 due beginning of class