Instruction Set Architecture

• What we learned
 – ISA types
 – ISA formats and tradeoffs
 – addressing modes
 – branch types
 – MIPS ISA

Performance

• What we learned
 – speedup
 – execution time
 – benchmarks
 – Amdahl’s law
Performance

- What we can do
 - calculate CPI, ET, clock-rate, etc.
 - calculate speedup
 - apply Amdahl’s law

Computer Arithmetic

- What we learned
 - the computer uses binary numbers
 - number systems
 - negative numbers
 - addition, subtraction, multiplication, division
 - ALU design
 - fast adders
 - floating point numbers, operations

Computer Arithmetic

- What we can do
 - manipulate binary numbers
 - do arithmetic on binary numbers
 - do arithmetic on fp numbers
 - simple adder, ALU design

CPU Architecture

- What we learned
 - single-cycle cpu, multiple cycle cpu
 - datapaths
 - control logic
 - multiple-cycle control
 - FSM
 - microprogramming
 - exceptions
CPU Architecture

- What we can do
 - construct datapath for new instructions
 - generate control logic (or FSM or microprogram) for new datapath or new instruction (don’t memorize microprogram format, just learn concepts)
 - incorporate exceptions into datapath and control

Pipelining

- What we learned
 - pipelined machine design, including
 - use of intermediate registers
 - pipelined control
 - data hazards, bubbles, and forwarding
 - branch hazards, bubbles/flushing, and simple branch prediction
 - advanced architectural concepts including branch prediction, superscalar execution, superpipelining, and out-of-order execution.

Pipelining

- What we can do
 - design a slightly different pipelined machine
 - generate control for it
 - understand implications of all kinds of data hazards
 - understand implications of all kinds of branch hazards
 - reason about instruction schedules for pipelined, superscalar, out-of-order, or VLIW machines

Memory

- What we learned
 - locality
 - memory hierarchies
 - hits, misses, miss penalties
 - cache performance (miss rates, MCPI, ET)
 - write-through, write-back, write-allocate, write-around
 - associativity
 - virtual memory, page tables
 - TLBs
 - Compulsory, capacity, conflict misses
Memory

- What we can do
 - identify types of locality, types of misses (compulsory, capacity, conflict)
 - identify hits and misses and manipulate cache structures for all types of caches
 - evaluate or predict cache performance
 - do LRU replacement
 - manipulate page table and TLB structures, identify TLB misses and page faults

Multiprocessors

- What we learned
 - bus-based, network-based
 - UMA, NUMA
 - shared-memory, message-passing
 - cache coherency
 - multithreading