Input/Output
Exceptions and Interrupts

Terminology isn’t consistent. We’ll define:

- **Exceptions**: any unexpected change in control flow
 Branches and jumps are not considered exceptions.

- Exceptions are classified as either:
 - **Internal Interrupts**: Exception caused by something in the execution pipeline.
 - arithmetic overflow
 - illegal instruction
 - divide by zero
 - user program invoking the OS
 - **External Interrupts**: ones caused by something else.
 - I/O device signals completion to CPU
 - memory parity error
 - timer signal
 - low battery warning
Handling exceptions

On an exception, the hardware needs to:

1. Save the PC (allows the OS look at the offending instructions and to later resume execution)
2. Record the nature of the exception/interrupt
3. Transfer control to exception handler (in OS)

Two ways to do 2 & 3:

- Write cause of exception in a status register; pass control to the exception handler.
- Use vectored interrupt: transfers control to a different location for each possible type of interrupt/exception
User versus System operation

- User-level programs are restricted.
 - Only program state instructions can be executed
 • No I/O, no ability to set the page table register, etc.
 • Memory references are virtual addresses to user’s VM.
 - If a user program needs to do I/O, it signals the OS
 • Typically by raising an exception

- System programs run in supervisor (aka kernel) mode
 - Can execute privileged instructions for I/O, etc.

- To accomplish I/O, hardware needs ability for:
 - OS to tell I/O device what to do
 - I/O devices to notify OS (e.g. “I'm done” or “I failed”)
 - Data to be transferred from device to memory
Giving Commands to I/O Devices

• Two methods are used to address I/O devices:
 - Special I/O instructions
 - Memory-mapped I/O

• Special I/O instructions specify a device number and a command

• Memory-mapped I/O:
 - Each I/O device is given a portion of the real address space
 To prevent chaos, these addressed aren’t mapped to users’ virtual memory.
 - Read and writes to those addresses (by the OS) are interpreted as commands by the I/O device
I/O Device Notifying the OS

• The OS needs to know when:
 - The I/O device has completed an operation
 - The I/O operation has encountered an error

• This can be accomplished in two different ways:
 - Polling:
 • The I/O device put information in a status register
 • The OS periodically check the status register
 - I/O Interrupt:
 • Whenever an I/O device needs attention from the processor, it issues an interrupt to the processor.
Polling

- **Advantage:**
 - *Simple*: the processor is in control and does all the work

- **Disadvantage:**
 - *Polling overhead can consume a lot of CPU time*

busy wait loop is an inefficient way to use the CPU unless the device is very fast!

but checks for I/O completion can be dispersed among computation intensive code
Interrupt Driven Data Transfer

- **Advantage:**
 - User program is only halted during actual transfer

- **Disadvantage:**
 - Special hardware is needed to
 - Cause an interrupt (I/O device)
 - Detect an interrupt (processor)
Transferring Data to/from Memory

- **Direct Memory Access (DMA):**
 - External to the CPU
 - DMA controller is a bus master
 - Transfer blocks of data to or from memory without CPU intervention

CPU sends a starting address, direction, and length count to DMA Controller.

DMA Controller does whatever is needed to get IO Controller and Memory to transfer data on the bus.
Network technologies

- **Local Area Network (LAN)**
 - Ethernet is most common LAN technology
 - 10 Mbit/sec, 100 Mbit/s ("fast Ethernet") and 1 Gbit/s ("Gigabit Ethernet") versions
 - Originally, used "Aloha" protocol
 - If line is quiet, sender dumps message on wire
 - If message got garbled with another message, all senders wait a random amount of time and retry
 - Limits throughput to about 70% peak
 - Today, often controlled by switches

- **Wide Area Network (WAN)**
 - IP (Internet Protocol) used on Internet.
 - TCP layer on top of IP resends lost packets, etc
 - ATM (Asynchronous Transfer Protocol)
 - Another protocol for long distances; 155 Mbit/sec to 2.5 Gbit/sec