Measuring Performance
Part I
Performance Marches On ...

But what is performance?
Time versus throughput

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Time to Bay Area</th>
<th>Speed</th>
<th>Passengers</th>
<th>Throughput (pm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrari</td>
<td>3.1 hours</td>
<td>160 mph</td>
<td>2</td>
<td>320</td>
</tr>
<tr>
<td>Greyhound</td>
<td>7.7 hours</td>
<td>65 mph</td>
<td>60</td>
<td>3900</td>
</tr>
</tbody>
</table>

- Time to do the task from start to finish
 - execution time, response time, latency
- Tasks per unit time
 - throughput, bandwidth

mostly used for data movement
Time versus throughput

• Time is measured in time units/job.

• **Throughput** is measured in jobs/time unit.

• But “time = 1/throughput” may be false.

 - It takes 4 months to grow a tomato.

 Can you only grow 3 tomatoes a year ??

 - If you run only one job at a time,

 time = 1/throughput
How do you measure Execution Time?

> time foo
... foo’s results ...
90.7u 12.9s 2:39 65%
>

- **user CPU time?** (time CPU spends running your code)
- **total CPU time** (user + kernel)? (includes op. sys. code)
- **Wallclock time?** (total elapsed time)
 - Includes time spent waiting for I/O, other users, ...
- **Answer depends ...**

 For measuring processor speed, we can use total CPU.
 - If no I/O or interrupts, wallclock may be better
 - more precise (microseconds rather than 1/100 sec)
 - can measure individual sections of code
Performance

- For “performance”, larger should be better.
 - Time is backwards - larger execution time is worse.

 CPU performance = 1 / total CPU time

 System performance = 1 / wallclock time

- These terms only make sense if you know what program is measured ...
 - e.g. “The performance on Linpack was 200 MFLOP/S”

- and if CPU or system only works on 1 program at a time.
 - This may all change in the next few years!

- Performance’s units, “inverse seconds”, can be awkward
 - Can answer “What was performance?” by “It took 15 seconds.”
A brief study of time

CPU Time = CPU cycles executed * Cycle times

• Every conventional processor has a clock with a fixed cycle time or clock rate

 Rate often measured in MHz = millions of cycles/second
 Time often measured in ns (nanoseconds)

 X MHz corresponds to 1000/X ns (e.g. 500 MHz ↔ 2 ns clock)

CPU cycles = Instructions executed * CPI

 Average Clock Cycles per Instruction
Putting it all together

\[\text{CPU Execution Time} = \frac{\text{Instruction Count}}{\text{CPI}} \times \text{Clock Cycle Time} \]

Note: CPI is somewhat artificial (it’s computed from the other numbers using this formula) but it’s an intuitive and useful concept.

Note: Use **dynamic** instruction count (#instructions executed), not **static** (#instructions in compiled code)
Explaining performance variation

<table>
<thead>
<tr>
<th>CPU Execution Time</th>
<th>Instruction Count</th>
<th>CPI</th>
<th>Clock Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same machine, different programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same program, different machines, but same ISA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same program, different ISA's</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The formula for CPU Execution Time is:

\[\text{CPU Execution Time} = \text{Instruction Count} \times \text{CPI} \times \text{Clock Cycle Time} \]
Comparing performance

The fundamental question:

Will computer A will run program P faster than computer B?

• Compare clock rates?
 - Will a 1.7 GHz PC be faster than a 867 MHz Mac??
 - Not necessarily – CPI or Instruction Count may differ.
 • see http://www.apple.com/g4/myth (Photoshop benchmark)

• Peak MIPS rate? (MIPS = Millions of Instructions / sec)
 - PowerPC G4 can execute 4 instruction/cycle (CPI=1/4)
 - 867 MHz clock → 3468 MIPS peak
 - But it doesn’t necessarily execute that quickly.
Comparing performance

The fundamental question:

Will computer A will run program P faster than computer B?

• Compare actual MIPS rate on program P?
 - MIPS = 1 / (CPI \times \text{Cycle time}) \text{ (in microseconds)}
 - If Instruction Counts are the same, this is OK
 • E.g., comparing two implementations of same ISA
 - Otherwise, actual MIPS doesn’t answer question.
Comparing performance

The fundamental question:

Will computer A will run program P faster than computer B?

• **Relative MIPS**?
 - Defined as, “How much faster is this computer than a Vax 11 model 780 (on some benchmark programs)”
 - If the benchmark is similar to P, this may give the right answer.
What about MFLOP/S?

- Millions of Floating Point Ops per Second
 - Often written MFLOPS.

- "Peak MFLOP/S" (like peak MIPS) is useless.
 - maximum float ops per cycle / cycle time (in microseconds)

- "Normalized MFLOP/S" uses conventions (e.g. "divide counts as three float ops") so "flop count" of a program is machine-independent.
 - OK for floating-point intensive programs
 - Depends on program - a better MFLOP/S rate on program P doesn’t guarantee better performance on Q.
Relative Performance

• “Computer X is r times faster than Y” means

\[
\frac{\text{Perf}(X)}{\text{Perf}(Y)} = r \quad (\text{i.e. } \frac{\text{Time}(Y)}{\text{Time}(X)} = r)
\]

Note the swapping of which goes on top when you use times
Comparing speeds ...

• “times faster than” (or “times as fast as”) means there’s a multiplicative factor relating quantities
 - “X was 3 time faster than Y” → \(\text{speed}(X) = 3 \text{ speed}(Y) \)

• “percent faster than” implies an additive relationship
 - “X was 25% faster than Y” → \(\text{speed}(X) = (1+25/100) \text{ speed}(Y) \)

• “percent slower than” implies subtraction
 - “X was 5% slower than Y” → \(\text{speed}(X) = (1-5/100) \text{ speed}(Y) \)
 - “100% slower” means it doesn’t move at all !

• “times slower than” or “times as slow as” is awkward.
 - “X was 3 times slower than Y” means \(\text{speed}(X) = 1/3 \text{ speed}(Y) \)
 - It hints at having a measure of “slowness”
 - I’ll mostly avoid using this.
Percentages aren’t intuitive!

- If X is p% faster than Y, is Y p% slower than X?
 - X is p% faster \rightarrow speed(X) = $(1+p/100)$ speed(Y)
 - so speed(Y) = $1/(1+p/100)$ speed(X)
 - Y is p% slower \rightarrow speed(Y) = $(1-p/100)$ speed(X)

No! $1/(1+p/100)$ is not $(1 - p/100)$ (unless p=0)

- Suppose X is p% faster than Y and Y q% faster than Z.
 Is X $(p+q)$% faster than Z?
“Times faster” is easier!

X is r times faster than Y \[\Rightarrow \text{speed}(X) = r \text{ speed}(Y)\]
\[\Rightarrow \text{speed}(Y) = \frac{1}{r} \text{ speed}(X)\]
\[\Rightarrow Y \text{ is } r \text{ times slower than } X\]

X is r times faster than Y, & Y is s times faster than Z
\[\Rightarrow \text{speed}(X) = r \text{ speed}(Y) = rs \text{ speed}(Z)\]
\[\Rightarrow X \text{ is } rs \text{ faster than } Z\]

Advice: Convert “% faster” to “times faster”
then do calculation and convert back if needed.

Example: change “25% faster” to “5/4 times faster”.
Machine of the day: Turing Machine

• Published 1936 by Alan Turing
• Extremely simple ISA
• “Universal” Turing machine (with about 20 states and 4 symbols) can do any computable function.
 - Program and data are written on the same tape

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0, go L</td>
<td>0, go R</td>
</tr>
<tr>
<td>1</td>
<td>0, go R</td>
<td>1, go R</td>
</tr>
</tbody>
</table>

• Footnotes: Turing went on to work on real computer
Machine of the day: Turing Machine

- Used to prove some functions are uncomputable
- Turing machine only of theoretical interest
 - still remarkable - had elements of real computer
- Turing worked on “Bombe” computer during WW II
 - cracked German codes; greatly helped Allied victory
- After war, designed a general purpose computer (not built), proposed ideas of programming languages, neural nets, and the “Turing test”.
- Turing persecuted as homosexual; committed suicide