Solutions Problem Set #5

Solution Problem 1

The proof is by contradiction. Assume L is Context Free. Then by the Pumping Lemma for Context Free Languages, there exists a constant $p \geq 1$, such that for any $w \in L$, $|w| \geq p$, w can be written as $vxyuz$, satisfying the following three conditions: (1) $vx^iyu^iz \in L$, $\forall i \geq 0$; (2) $|xu| \neq 0$; (3) $|xyu| \leq p$. Consider $w = 0^p10^{2p}10^{3p}$. $w \in L$ and $|w| \geq p$. We check all possible partitions of w into $vxyuz$ and show that there exists $i \geq 0$, for which condition (1) does not hold:

1. Case: $|v| = 0$
 By condition (3) x, y, u span the first p symbols of w, thus $x = 0^\alpha$, $y = 0^\beta$, $u = 0^\gamma$. By condition (2), α and γ can not be both 0. Thus $vx^0yu^0z = 0^{p-\alpha-\gamma}10^{2p}10^{3p} \notin L$.

2. Case: $0 < |v| < p$
 - if 1 is contained in either x or u, $(|xu| = \alpha \geq 1)$, then $w_1 = vx^0yu^0z = 0^p0^{2p-\alpha+1}10^{3p} = 0^{3p-\alpha+1} \notin L$.
 - if $v = 0^\beta, x = 0^\alpha$ and $u = 0^\gamma$ and $y = 0^*10^*$, then $w_1 = vx^0yu^0z = 0^{p-\alpha}10^{2p-\gamma}10^{3p} \notin L$, because by condition (2) α and γ can not be both 0, thus $\frac{2p-\alpha-\gamma}{2} \neq p$ or $p - \alpha \neq p$.

3. Case: $p < |v| < 2p$
 The string $w_1 = vx^0yu^0z = 0^p10^{2p-\alpha-\gamma}10^{3p} \notin L$, because by condition (2) $|xu| = \alpha + \gamma \geq 1$, thus $\frac{2p-\alpha-\gamma}{2} \neq p$.

4. Case: $2p < |v| < 3p$
 - If x or u contain the second 1 of w, then $vx^0yu^0z = 0^p10^* \notin L$.
 - If x and u do not contain 1, i.e. $x = 0^\alpha$, $u = 0^\gamma$, and $y = 0^*10^*$, then $w_1 = vx^0yu^0z = 0^p10^{2p-\alpha-\gamma}10^{3p} \notin L$ or $w_1 = vx^0yu^0z = 0^p10^{2p-\alpha-\gamma}10^{3p} \notin L$. Because by condition (2) α and γ can not be both 0, then either $\frac{2p-\alpha-\gamma}{2} \neq p$, or $\frac{2p-\alpha}{2} \neq p$, or $\frac{3p-\gamma}{3} \neq p$.

This concludes the proof.
Solution Problem 2

- Formal Definition of Automaton with Queue:
 An automaton with Queue is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_s, q_a, q_r)\), where \(Q\) is a finite set of states, \(\Sigma\) is the input alphabet (also finite), \(\Gamma\) is a finite set of stack symbols, \(q_s, q_a, q_r\) are the initial, accepting, and rejecting state, respectively. The transition function is defined as \(\delta : (Q \times \Gamma \epsilon) \rightarrow (Q \times \Gamma^*)\).

- The set of all configurations is all possible pairs of the form \((Q \times \Gamma^*)\).
- The initial configuration is \((q_s, w)\), meaning the machine is in state \(q_s\), with the input \(w\) enqueued.
- An accepting configuration is \((q_a, x)\), meaning the finite control is at state \(q_a\), and \(x\) is the content of the Queue.
- A rejecting configuration is \((q_r, x)\).

- Definition of the computation relation:
 We say that a configuration \(S_1 = (q_i, a\alpha)\) yields a configuration \(S_2 = (q_j, \alpha x)\), denoted as \(S_1 \implies S_2\), if \(\delta(q_i, a) = (q_j, x)\).
 If the Queue is empty then \((q_i, \epsilon) \implies (q_j, x)\), if \(\delta(q_i, \epsilon) = (q_j, x)\).

- The language accepted by the Automaton with Queue is the set of all strings \(w\) for which there exists a sequence of configurations beginning with the initial configuration \((q_s, w)\implies^*(q_a, x)\) and each configuration in the sequence is defined by the computation relation, above.

Solution Problem 3

Given a QFA \(M = (Q, \Sigma, \Gamma, \delta, q_s, q_a, q_r)\) we build a Turing machine \(M' = (Q', \Sigma', \Gamma', \delta', q'_0, q'_a, q'_r)\)
- \(\Gamma' = \Gamma \cup \{\uparrow\}\), where \(\uparrow\) is a new tape symbol, added to tape alphabet of \(M'\) so that the tape of \(M'\) can be converted to simulate the First-In-First-Out discipline. \(\uparrow\) is used to mark the left and right end of the queue.
- \(Q' = Q \cup Q_{aux}\), where \(Q_{aux}\) is auxiliary set of states, which \(M'\) needs to carry out the simulation.
- \(q'_s = q_s, q'_r = q_r, q'_a = q_a\).

The initial configuration of \(M\) \((q'_s, w)\) corresponds to \(q_sw\) configuration of \(M'\).
Following is an informal description of the simulation of the QFA M by a Turing Machine M':

1. M' inserts \uparrow symbol at the left end of its tape and marks the right end with \uparrow symbol, i.e., the initial configuration $(q_s w) \xrightarrow{*} (q_s \uparrow w \uparrow)$. GOTO step 2.

2. If the current state is q'_a or q'_r accept, or reject, respectively and halt. Otherwise GOTO step 3.

3. Assuming the current state of M' is q_i.

 - M' reads the symbol under its tape head, let that be a, remembers it, and writes the \uparrow symbol over it.

 - Then M' checks M’s transition table. M' has a copy of M’s transition table. If $\delta(q_i, a) = (q_j, x)$, then M' remembers the state q_j (as its ’next’ state) and x in a buffer.

 - M' moves its tape head to the right until it reaches \uparrow symbol. (M' simply reads a symbol under its head, and moves to the right until the symbol read is \uparrow; thus the tape head is over the right \uparrow symbol.) M' writes the first symbol of x over it, moves one position to the right, writes the next symbol of x, and continues until x is written in its entirety on the tape. M' writes \uparrow symbol, to designate the right end of the ’queue’ on the tape,

 - M' moves the tape head to the left until it reads \uparrow symbol. Then M' moves one position to the right.

 - M' sets its state to q_j. GOTO step 2.