Network Quality of Service

- Problem: How do you provide quality of service in the Internet?
 - Bandwidth, delay, “rate”
- Even harder: In multipoint-multipoint communications?
 - Heterogeneous network performance
- Datagram networks
 - Maximize network utilization, support multipoint, robust
 - But, only best-effort (no guarantees)
- Circuit switched networks
 - Guarantees
 - Inefficient for bursty traffic, not robust, no multipoint
The Best of Both

- How can we provide the best of both worlds?
 - Integrated Services Packet Network (ISPN)
 - Essentially, add service guarantees to datagram networks
- To do this, we need:
 - Flow specs defining resource requirements (network, receiver)
 - Routing protocol supporting (1) QoS and (2) multicast
 - Reservation protocol to create and maintain reservations
 - Admission control to prevent over-utilization
 - Packet transmission scheduling algorithm

Reservation Protocol

- The paper focuses on the reservation protocol for two systems
 - Internet Stream Protocol, ST-II (IPv5?)
 - Resource Reservation Protocol, RSVP
- Overview
 - Describe reservation protocols
 - Compare static performance
 - Compare dynamic performance
- In retrospect, should have read the RSVP paper
ST-II

- **Service model**
 - Simplex data stream multicast from source to receivers
 » ST-II implements the multicast tree
 - Connect message floods net to establish paths to receivers
 » Includes flow specification to do resource reservation
 » Tree supports only one flow spec
 » Independent Streams model
 - Establish multicast state, reserve network resources
 - Receivers reply with Accept or Refuse
 » Can adjust flow specification in reply
 - Sender synchronously waits for replies from all receivers
 » Can adapt to lower flow spec or reject receiver

ST-II (2)

- **Group membership**
 - New receivers communicate out-of-band with source
 - Receivers reply with Accept or Refuse
 - Sender can adapt or reject a receiver requiring a different flow
 - Receivers leave with a Refuse or Disconnect from source

- **Reliability**
 - Control messages reliably transmitted hop-by-hop
 - Hello messages used for heart-beat between neighbors
RSVP

- Service model
 - Also simplex distribution tree
 » RSVP relies upon IP multicast to create and maintain tree
 - Source sends Path message to multicast group address
 » Includes flow spec for receivers
 » Notifies intermediate RSVP agents of new tree
 - Receivers listen to multicast group to receive Path messages
 » Receiver-initiated
 » Respond with Reservation requests back to source
 » RSVP agents reserve resources as request goes back to source
 » Terminates when it reaches a branch that can support the flow

RSVP (2)

- Group membership
 - Handled by underlying IP multicast
- Reliability
 - Soft state built from period messages
 - Path refreshes adapt to changes in multicast distribution tree
 » From source, adapts to topology changes
 - Reservation refreshes maintain resource reservations
 » From receivers, used for new reservations
RSVP Reservations

- RSVP reservations have two components
 - Resource allocation
 » How much to reserve (e.g., 128Kb)
 - Packet filter
 » What packets get to use the resources (e.g., which sources)

- Packet filters
 - Wildcard – packets from any source can use reservations
 - Fixed filter – packets from a single source only
 » Changing source requires new setup and admission control
 - Dynamic filter – dynamically choose a set of sources
 » Without requiring redoing setup and admission control

Analyses

- Static analysis – network resource requirements
 - Application requirements
 - Heterogeneous groups
 - Channel selection

- Dynamic analysis – protocol overhead for adaptation
 - Reliability
 - Group membership

- Or, what does RSVP have that ST-II does not?
Static Analyses

- Application requirements
 - Audio conferencing – at most a few speakers at a time
 - Only need to reserve a small number of audio channels
- Problem: N participants
 - Potentially N sources
 - ST-II needs to allocate a channel for all sources
 - Resource requirements scale with number of members
 - Limits maximum size of group
 - RSVP can use a Wildcard reservation for maximum number of simultaneous sources
 - Resource requirements scale with number of simultaneous sources

Heterogeneous Groups

- What happens when receivers have different resource capabilities?
 - LAN receivers vs. modem receivers
- ST-II
 - Must allocate maximum requested resources along all links
 - Or, limited to lowest common denominator
- RSVP
 - Reserves minimum requirements for all downstream receivers
- Experiment
 - Complex network with random receivers and sources
 - RSVP 27.7% less than ST-II
Channel Selection

- What about selecting from a dynamic set of sources?
 - Channel selection

- Options
 - ST-II: Allocate channels for every source
 - Too many simultaneous sources to allocate resources
 - RSVP Dynamic Filter: Receiver reserves enough resources for max simultaneous connections
 - Filtering done in network at RSVP agent
 - Which sources can be changed dynamically
 - RSVP Fixed Filter: Sources and reservations for them are fixed
 - Chosen Source model
 - Changing sources requires entirely new tree

Dynamic Analysis

- Network dynamics
 - What is the overhead of adapting to topology changes?
- ST-II
 - Hello messages among neighbors
 - Scales with number of agents, independent of reservations
- RSVP
 - Period Path and Reservation refresh messages
 - Merging used to ensure that only one reservation message is propagated over link
 - Scales with number of reservations
The overhead of group membership changes involves control messages and latency. Here are the specifics:

Control messages
- **ST-II**
 - Connect and Accept exchanged between source and receiver
 - Overhead on links proportional to # of downstream receivers
 - More processing overhead closer to source (hot spots)
- **RSVP**
 - One message on link in both directions (Path, Reservation)
 - Path is multicast, Reservation only has to reach closest branch

Latency
- **ST-II**: One round-trip time
- **RSVP**: Depends on timers (e.g., Path refresh rate)

Some common design themes
- Soft state
- Receiver-driven

ST-II maximum group size
- I’m still unclear how they max group size of floor(bottleneck bandwidth/single stream resource request) + 1 -> why the +1 part?

Discussion
- Equal comparison
 - Not surprisingly ST-II lost on all of the benchmarks. This is like making performance comparison between Voodoo I (1993) and GeForce3 (2001) graphics cards.
For Next Time...

- Send in an eval for only one of Stefan’s papers
 - Both are interesting and well-written