Overview

- Current Internet architecture at a high level
 - Should seem like a review
- Clark Internet design philosophy paper
Network Components

- Hosts: Computer, PDA, light switch...
- Link: Transmission media
 - Wired or wireless
 - Broadcast or switched
- Switch: Crossroads, move bits between links
 - Packet switching: stateless store and forward (Internet)
 - Circuit switching: stateful, cut through (POTS)
- Protocol: Agreement on how information is to be formatted and transmitted

Internetwork

- An internetwork is a network of networks
 - Could do this in more than one way
 - IP is just one, POTS is another
- Routers (gateways) move packets between networks
 - Packet switched or circuit switched
 - Could also translate
- The Internet
 - Routers move IP packets from one network to another
 » IP “dial tone”
 - Minimal requirements on underlying network
 - Can use almost any potential network or link layer
 » Modem, Ethernet, token ring, ATM, ADSL, cell phone, cable…
How do we communicate in the Internet?

- Need to specify how to handle
 - Addressing
 - Routing
 - Service models
 - Failures
 - Management
 - Accounting
 - Etc.
Addressing

- Domain name: www.ucsd.edu
 - Global (across networks), human readable
- IP: 132.239.50.184
 - Global, what is actually used in routing
- Ethernet: 00-90-27-BD-BC-F7
 - Local, used within a particular network

- When making a connection…
 - Domain name is converted to an IP address
 - IP address used in packets
 - Packets sent on Ethernet to Ether address of the gateway

Routing

- When a gateway receives a packet, it needs to decide what to do with it
 - If it is to itself, deliver it
 - Otherwise, figure out which link to send it to (packet switching)
- Routing tables
 - Map IP prefixes to output links using forwarding tables
 - Per-hop, router does not need to know final destination
 - Automatically updated in response to failures, changes
- Internet routing done at two levels
 - Within a domain, across domains
- Much more later…
Service Models

- What can you expect from a particular protocol?
 - Unreliable (UDP)
 - Reliable (TCP)
 - Timely (RTP)
 » No guarantees on Internet, though!

Failures

- Internet delivery is best effort – no guarantees
- Routers go down
 - Use a different route (how do routers figure out alternates?)
- Data corruption
 - Can happen in many places – any piece of hardware a packet travels over (link, router I/O bus, router memory, etc.)
 - Hardware CRCs, software checksums to detect
- Reordering
 - Sequence numbers (how large?)
 - Buffer packets at end points (how much?)
- Drops
 - Router link buffers can fill up (congestion)
 - Need to drop (which ones?)
Clark: Design Philosophy of the DARPA Internet Protocols

- Great paper
 - Not many papers explaining the motivation and reasoning that went into the design of systems that we take for granted
- Note that this was written 15 years after the project began
 - And the paper itself is already 13 years old!
- The setting
 - Multiple research and military networks
 - How do we connect them so that they can talk to each other?
 - Hard to imagine, but this was before LANs

Before going into the text...

- Meta-points
 - The Internet, TCP/IP, etc., were designed and engineered – there is no natural law that says the Internet had to look the way it does now
 » It could well have been done differently
 - “The Internet”, “TCP/IP”, etc., continually evolve
 » The Internet today is not the same Internet as 1988, 1973
 » TCP/IP have changed considerably over the years
 » We’re using IPv4, with IPv6 in the works
 - Seemingly straightforward decisions can have very subtle correctness and performance implications
 » EOL and PSH
 » Acknowledging bytes vs. packets (debates still rage…)
Primary Goal

- “Effective technique for multiplexed utilization of existing interconnected networks”
 - Minimal assumptions about underlying networks
 - No support for broadcast, multicast, real-time, reliability, etc.
 - Nets could support it, but not necessary
 - Extra support could actually get in the way (X.25 example)
 - Packet switched, store and forward
 - Matched application needs, nets already packet switched
 - Enables fine-grained resource sharing
 - “Gateways” interconnect networks
 - Routers today

Why is this hard?

- Every network characteristic is different between two arbitrary networks
 - Addressing
 - Each network media has a different addressing scheme
 - Bandwidth
 - Modems to terabits
 - Latency
 - Seconds to nanoseconds
 - Packet size
 - Dozens to thousands of bytes
 - Loss rates
 - Differ by many orders of magnitude
Possibilities

- All nets communicate using a common format
 - Internet: IP over everything
 - To talk across networks, you send IP packets
 - Internal to a network, can use whatever you want
 » Raw Ethernet, ATM, etc.
- Translate packets from one network to another
 - Convert Ethernet to ATM
 - Convert IP to OSI
 - X.25

Secondary Goals

- Survivability
- Multiple communication services
- Accommodate a variety of networks
- Distributed management of resources
- Cost-effective
- Minimal effort to attach hosts to net
- Resource accounting

- These are in order of priority -- a different priority ordering would likely result in a different design
Survivability

- Internet
 - Assume anything can fail between two end points
 - Fate-sharing (state is lost only when end point is lost)
 - Designed to tolerate 1% drop rate
 - High or low? Depends on the app, assumptions, goals, etc.
 - 10% things break down
 - Routing is simpler, does not have to adapt to failure
 - For a given datagram
- POTS (the other global network)
 - Ultra reliable switches
 - Self-healing
 - Hardware switch over in the middle of a phone call

Survivability Implications

- End points maintain all essential state
 - Routers are stateless ("soft state")
 - End points responsible for recovering from failures
- Host machines are trusted
 - Have to rely upon hosts to implement the protocols correctly
 - For performance as well as correctness
 - Easy to be malicious
 - Ex: source addresses (everything in an IP packet) are trusted (IP spoofing)
- Can be difficult to determine source of failures
 - Not much feedback from network back to end point
 - Makes performance optimizations more difficult
Types of Service

- Bottom line: Best effort datagram service
- Building block
 - Unreliable (UDP)
 - Reliable service (TCP)
 » Even two types of this: what are they?
 - Real-time
 » Can you do real-time without help from network?
 - Multicast
- Reason why TCP and IP became separate protocols
 - IP basis for all other protocols
 - Originally were combined

Network Variety

- Fundamental goal was to interconnect networks…
- Internet successful in part because its design met this goal extremely well
 - Topology: point-to-point, bus, ring, radio, satellite, etc.
 - Characteristics: modem to Tbit speeds, us to sec delays
- Does not mean that IP on a given network is efficient
 - X.25 supports reliable delivery
 - ATM uses 53 byte cells, poor fragmentation for IP packets
 » IP gets layered on top of cells, more effort at end points
Other Goals

- Distributed management
 - Different parts of network owned, controlled, managed by separate. Difficult to support, though
 » Hard to do things across entities (e.g., optimize routes)
 » Not sure what optimize means (to an ISP, customer?)
 - Problem in 88, more of a problem today
- Cost-effective (compared to?)
 - IP routers cheap compared to POTS switches
 - But higher drop rates, inefficient routing, end-to-end reliability all impose an overhead/inefficiency on the network
 - Still a source of religious debate

Other Goals (2)

- Attachment cost
 - $100M/year on protocol stacks by major OS vendors
 » Is that cheap or expensive given 100s of millions of users?
 - Bugs still result in misbehaving hosts!
 » Both correctness and performance
 » There are tools that can tell you what OS, TCP/IP stack you are using based upon the bug signatures in implementations
- Accountability
 - Who pays for all of this?
 - What is the economic model of the future?
 - No one knows (plenty of ideas, though)
 - Another RD (religious debate)
Discussion

- What surprised you most about the Internet design and architecture when you read the paper?
- What is different about the Internet today than in ‘88 when Clark wrote this paper?
- What are limitations to the Internet design?

- When thinking about the Internet, imagine it as the culmination of many iterations of design and trial and error – not as an architecture that was preordained

For Next Time...

- Send me email if you aren’t on the list yet
- Read Saltzer84 and Clark90 papers
- Browse Chapter 3, read Chapter 4
- Optional
 - Zimmerman80 – OSI reference model
 - Shenker95 – Should there be a new service model for the Internet to support multimedia applications?