Discussion Section Notes
Pumping Lemma for Context Free Languages (PL4CFL)

Example of Problem and Solution

Problem 1: Consider \(L = \{ tt : t \in \{ a, b \}^* \} \). Prove it is not context free.

Solution:
No, it is not. We'll prove it by using the PL4CFL.

Assume by contradiction that \(L \) is context free (CF). Then, by PL4CFL, we know that there exists a pumping length \(p > 0 \) such that any word \(w \in L, |w| \geq p \), can be partitioned as \(uvxyz = w \) (with \(|vxy| \leq p \) and \(|uv| > 0 \)) in such a way that, for any \(i \geq 0 \), the word \(uv^i xy^i z \) also belongs to \(L \).

One (incorrect) possible choice is \(w = a^p b^p \). However, this string can be pumped. Check it.

On the other hand, consider the string \(w = a^p b a^p b^p \). Clearly \(|w| \geq p \). Moreover, any partition of \(w \) into \(uvxyz \) must fall into exactly one of the following cases:

1. \(v \) and \(y \) both contain only the same symbol, that is, either \(v = a^k \) and \(y = a^j \), or \(v = b^k \) and \(y = b^j \). By pumping down this word (which means \(i = 0 \)) into \(w' = uzx \) we get that \(w' = a^m b^n b^p \) where all except one exponent are equal to \(p \). The offending exponent is less than \(p \) since either \(k + j > 0 \). Therefore, string \(w' \) cannot belong to language \(L \). We get a contradiction for this case.

2. Either \(v \) and \(y \) contains two different symbols, that is, either \(v = a^k b^j \) and \(y = b^l \), or \(v = b^k a^j \) and \(y = a^l \). By pumping up this word (say \(i = 2 \)) into \(w' = uv^2 xy^2 z \) we get one of the two following cases:

 - \(v = a^k b^j \) and \(y = b^l \), and assume the substring \(vxy \) is in the first half of \(w \); the case \(vxy \) is in the second half is analogous. Then \(w' = a^{p-k} (a^k b^j)^2 b^{p-j-l} (b^l)^2 a^p b^p = a^{p-k} a^k b^j a^k b^j b^p a^p b^p = a^p b^j a^k b^{p+i} a^p b^p \). There is no way to split \(w' \) into two equal strings \(tt \) in order to satisfy the restriction \(w' = tt \) for some \(t \in \{ a, b \}^* \). This follows from the fact that, if \(w' \) were in \(L \), the string \(t \) should start with an \(a \), and the two possible ways to break \(w' \) into \(tt \) such that \(t \) starts with an \(a \) contain a different combination of \(a \)'s and \(b \)'s.

 - \(v = b^k a^j \) and \(y = a^l \). Then \(w' = a^{p-2} b^{p-k} (b^k a^j)^2 b^{p-j-l} (a^l)^2 a^p b^p = a^p b^j a^k b^k a^{p+i+l} b^p \). There is no way to split \(w' \) into two equal strings \(tt \) in order to satisfy the restriction \(w' = tt \) for some \(t \in \{ a, b \}^* \). The same argument as the one given in the previous case applies here.
The two sub-cases imply that string w' cannot belong to language L. We get a contradiction for this case.

3. $v = a^k$ and $y = b^j$, or $v = b^k$ and $y = a^j$. By pumping down ($i = 0$) w onto $w' = uxz$ we get that $w' = uxz = a^{p-k}b^p-jap^p$ (if $v = a^k$ and $y = b^j$, and the substring vxy is in the first half of w) Since $k + j > 0$ we know that either $p - k$ or $p - j$ is less than p. Similar results are obtained when considering the case $v = b^k$ and $y = a^j$ and/or the substring vxy is in the second half of w. Therefore, string w' cannot belong to language L. We get a contradiction for this case.

Since for any possible partition of w into $uvxyz$ we obtain a contradiction, we have that L is not context free.