Problem Set 3 Solutions

Instructor: Daniele Micciancio

Problem 1

(a) Give a context-free grammar over the alphabet $T = \{x, +, *, (,)\}$ corresponding to all valid polynomial expressions in the symbol x, i.e., expressions built using symbol x, binary operations $+, *$ and parenthesis $(,)$ and obeying the usual syntactical rules of arithmetic. E.g., $(x + x) * x * x + ((x))$, $(x + x + (x * x) * (x + (x + (x + x))))$ are valid expressions, but $((x))$, $x(x)$, or $x + (x)$ are not.

(b) Give a left-most derivation of the string $(x + x) * (x + x * (x + x))$ using your grammar.

(c) Convert your grammar into an equivalent Push Down Automaton. (You can use generalized PDA if you like. Remember, a generalized PDA is a PDA with transition function of the form $\delta : Q \times \Sigma_c \times \Gamma_c \rightarrow \varphi(Q \times \Gamma^*)$ that can push arbitrary strings $\gamma \in \Gamma^*$ onto the stack at each transition.) Give both the formal definition and the state diagram of the PDA.

Solution:

(a) The formal definition for the context free grammar $G = (V, \Sigma, R, S)$ is given below:

\[
V = \{E\} \\
\Sigma = \{x, +, *, (,)\} \\
S = E,
\]

where the rule R is specified as follows:

\[
E \rightarrow E + E \\
E \rightarrow E * E \\
E \rightarrow (E) \\
E \rightarrow x
\]
(b) A derivation of a string w in a grammar G is a left-most derivation if at every step the left-most remaining variable is the one replaced. The left-most derivation of the string $(x + x) * (x + x * (x + x))$ is given as follows: $E \Rightarrow E * E \Rightarrow (E) * E \Rightarrow (E + E) * E \Rightarrow (x + x) * E \Rightarrow (x + x) * (E * E) \Rightarrow (x + x) * (E + E * E) \Rightarrow (x + x) * (x + x * (E + E)) \Rightarrow (x + x) * (x + x * (E + E)) \Rightarrow (x + x) * (x + x * (x + x))$.

Note that some steps (i.e. $E + E \Rightarrow x + E \Rightarrow x + x$) have been combined into one step for brevity.

(c) The state diagram of the generalized PDA M converted from the grammar G is shown in Figure 1.

![State diagram of the PDA](image)

Figure 1: State diagram of the PDA M converted from the grammar G

We now give the formal definition of the generalized PDA $M = (Q, \Sigma, \Gamma, \delta, s, F)$ as follows: $Q = \{q_0, q_i, q_f\}$, $\Sigma = \{x, +, *, (,)\}$, $\Gamma = \{x, +, *, (,), E, \$, \}$, $s = q_0$, $F = \{q_f\}$, and the transition function δ is formally defined as follows: $\delta(q_0, \epsilon, \epsilon) = \{(q_i, E\$)\}$, $\delta(q_i, \epsilon, E) = \{(q_i, E + E), (q_i, E * E), (q_i, (E)), (q_i, x)\}$, $\delta(q_i, \epsilon, \$) = \{(q_f, \epsilon)\}$, and for all $a \in \Sigma$, $\delta(q_i, a, a) = \{(q_i, \epsilon)\}$.
Problem 2

(a) Give a Push Down Automaton for the language over the alphabet \(\{a, b\} \) consisting of all words \(w \) that contains an equal number of \(a \)'s and \(b \)'s (in any order.) E.g., \(aabbbb \) and \(abbaabab \) are in the language, but \(aabbb \) and \(bbaabbaabb \) are not. (Here it is enough to draw the transition diagram. No formal definition required.)

(b) Give an accepting computation of your automaton on input \(abbaba \). (Remember, a computation is a sequence of \(w_i \in \Sigma, \ r_i \in Q \) and \(s_i \in \Gamma^* \) satisfying the conditions in definition 2.8 from the book.)

(c) Transform the PDA into an equivalent context-free grammar.

Solution:

(a) The language we need to consider is

\[
L_2 = \{ w \in \{a, b\}^* : n_a(w) = n_b(w) \}
\]

where \(n_x(w) \) is the number of occurrences of symbol \(x \) within string \(w \).

One possible approach to design a PDA \(P \) that recognizes language \(L_2 \) consists of using the stack to keep track of the difference between the number of \(a \)'s and the number of \(b \)'s. Consequently, if the input symbol read is an \(a \) then if the stack is empty or there is an \(a \) on the top, we just push an \(a \) into it. If there is a \(b \) on the top of the stack we just pop it off (we match the \(a \) with a \(b \)). In case we read a symbol \(b \), the situation is analogous: if the stack is empty or there is an \(b \) on the top, we just push an \(b \). If the top of the stack is a \(a \) we just pop it off (we now match the \(b \) with an \(a \)).

The state transition diagram for \(P \) is given in Figure 2.

![State transition diagram of the PDA P that recognizes the language L](image.png)
(b) Given a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ and a string $w \in \mathcal{L}(P)$, an accepting computation of P on input $w = w_1 \ldots w_n$ is a sequence of triples (w_{i+1}, r_i, s_i), $i = 0, \ldots, n$, where $w_i \in \Sigma$, $r_i \in Q$ and $s_i \in \Gamma^*$, such that the conditions in definition 2.8 from the book hold.

The following is an accepting computation of P on input w:

$(\epsilon, 0, \epsilon), (\epsilon, 1, \$), (a, 2, \epsilon), (\epsilon, 3, \$), (\epsilon, 1, a\$), (b, 1, \$), (b, 4, \epsilon), (\epsilon, 5, \$), (\epsilon, 1, b\$),
(a, 1, \$), (b, 4, \epsilon), (\epsilon, 5, \$), (\epsilon, 1, b\$), (a, 1, \$), (\epsilon, 8, \epsilon)$.

(c) In order to transform the PDA P shown above into a CFG $G = (V, \Sigma, R, S)$ the PDA P must meet three conditions: (1) P must have a single accept state, (2) P must empty its stack before accepting, and (3) each transition P either does a push move or a pop move, but does not do both at the same time. It is easy to see that P already meets these three conditions.

Therefore, the grammar $G = (V, \Sigma, R, S)$ is as follows:

$$
V = \{ A_{ij} : i, j = 0, \ldots, 8 \} \\
\Sigma = \{ a, b \} \\
S = A_{08}
$$

We separate the rules R in four sets. The first set is obtained by applying the steps (2) and (3) in the procedure described in the proof of Lemma 2.15 from the book.

$$
A_{ii} \rightarrow \epsilon \quad i = 0, \ldots, 8 \\
A_{ij} \rightarrow A_{ik} A_{kj} \quad i, j, k = 0, \ldots, 8
$$

The next set of rules is obtained by applying step (1) on transitions that push/pop symbol $\$ into/from the stack.

$$
A_{08} \rightarrow A_{11} \\
A_{02} \rightarrow A_{11} a \\
A_{04} \rightarrow A_{11} b \\
A_{22} \rightarrow A_{31} a \\
A_{24} \rightarrow A_{31} b \\
A_{28} \rightarrow A_{31} \\
A_{42} \rightarrow A_{51} a \\
A_{44} \rightarrow A_{51} b \\
A_{48} \rightarrow A_{51}
$$

Remark: Rules for A_{24} and A_{42} were missing from the first solutions. However, they were considered while grading.

The third set of rules is obtained by applying step (1) on transitions that push/pop symbol a into/from the stack:

$$
A_{08} \rightarrow A_{12} \\
A_{02} \rightarrow A_{12} a \\
A_{04} \rightarrow A_{12} b \\
A_{22} \rightarrow A_{32} a \\
A_{24} \rightarrow A_{32} b \\
A_{28} \rightarrow A_{32} \\
A_{42} \rightarrow A_{52} a \\
A_{44} \rightarrow A_{52} b \\
A_{48} \rightarrow A_{52}
$$
\[
A_{36} \rightarrow A_{11}a \\
A_{31} \rightarrow A_{11}b \\
A_{66} \rightarrow A_{31}a \\
A_{61} \rightarrow A_{31}b
\]

And, the last set of rules is obtained by applying step (1) on transitions that push/pop symbol \(b \) into/from the stack:

\[
A_{51} \rightarrow A_{11}a \\
A_{57} \rightarrow A_{11}b \\
A_{71} \rightarrow A_{51}a \\
A_{77} \rightarrow A_{51}b
\]

The four sets combined form the set of rules \(R \) of grammar \(G \).

Problem 3

In class we saw that the intersection of context-free languages is not always context-free, i.e., context-free languages are not closed under intersection. Prove that the intersection of a context-free language and a regular language is context-free.

[Hint: given a DFA \(M \) and a PDA \(N \), show how \(M \) and \(N \) can be combined into a single PDA \(P \) such that the language accepted by \(P \) is the intersection of the languages accepted by \(M \) and \(N \). Additional Hint: use construction similar to the one in Theorem 1.12 in the book for the intersection of regular languages. You will need to augment the construction with a stack.]

Solution: We prove that the intersection of a context-free language and a regular language is context-free by constructing a PDA that recognizes the intersection.

Let \(M = (Q_1, \Sigma, \delta_1, s_1, F_1) \) be a DFA that recognizes a regular language \(L_1 \) and let \(N = (Q_2, \Sigma, \Gamma, \delta_2, s_2, F_2) \) be a PDA that recognizes a context-free language \(L_2 \). We construct a PDA \(P = (Q, \Sigma, \Gamma, \delta, s, F) \) that recognizes the intersection of the two languages, \(L_1 \cap L_2 \), in a similar manner as the one shown for the intersection of regular languages. The formal definition is given below:

1. \(Q = \{(r_1, r_2) : r_1 \in Q_1 \text{ and } r_2 \in Q_2\} \), the set of states, is the Cartesian product, \(Q_1 \times Q_2 \), of sets \(Q_1 \) and \(Q_2 \).

2. \(\Sigma \), the input alphabet, is the same as in \(M \) and \(N \).

3. \(\Gamma \), the stack alphabet, is the same as in the given PDA \(N \).
4. δ, the transition function, is defined as follows. For each $(r_1, r_2) \in Q$, each $a \in \Sigma$, and each $x \in \Gamma \cup \{\epsilon\}$, let

$$\delta((r_1, r_2), a, x) = \{(r_1', r_2') : r_1' = \delta_1(r_1, a) \text{ and } (r_2', x') \in \delta_2(r_2, a, x)\}.$$

Note δ gets a state (r_1, r_2) of P (which is a pair of states from M and N, $r_1 \in Q_1$ and $r_2 \in Q_2$), together with an input symbol $a \in \Sigma$ and a stack symbol $x \in \Gamma$, and returns a set of all possible next state and stack symbol pairs $((r_1', r_2'), x')$. When the input symbol is ϵ, for which a DFA does not have a transition function defined, its next transition state r_1' for the DFA on input ϵ remains the same as the current state r_1 (i.e. $\delta_1(r_1, \epsilon) = r_1$). Hence, we define the transition function on input ϵ as follows.

$$\delta((r_1, r_2), \epsilon, x) = \{(r_1', r_2') : (r_2', x') \in \delta_2(r_2, a, x)\}.$$

5. $s \in Q$, the start state, is the pair (s_1, s_2).

6. F, the set of accept states, is the set of pairs in which each member is an accept state of M and N. We can write it as

$$F = \{(r_1, r_2) : r_1 \in F_1 \text{ and } r_2 \in F_2\}.$$

This expression is the same as $F = F_1 \times F_2$.

Problem 4

In the previous homework assignment, you proved that the language $L_4 = \{a^ny^mc^k \mid \min(n,m) \leq k\}$ is context-free. In this problem we examine the language

$$L = \{a^ny^mc^k \mid \max(n,m) \leq k\}.$$

Despite the similarity between the two definitions, it turns out that L is not context-free. Prove that L is not a context-free language using the pumping lemma for context-free languages.

Solution: Assume by contradiction that L is context free (CF). Then, by PL4CFL, we know that there exists a pumping length $p > 0$ such that any word $w \in L$, $|w| \geq p$, can be partitioned as $uvwxyz = w$ (with $|vxy| \leq p$ and $|uy| > 0$) in such a way that, for any $i \geq 0$, the word uv^ixyz also belongs to L.

Now, consider the string $w = a^pb^pc^p$. Clearly $w \in L$ and $|w| \geq p$. Moreover, because the condition $|vxy| \leq p$, any partition of w into $uvwxyz$ must fall into exactly one of the following cases:
1. \(v \) and \(y \) both contain only the same symbol, that is, either (A) \(v = a^k \) and \(y = a^j \), or (B) \(v = b^k \) and \(y = b^j \), or (C) \(v = c^k \) and \(y = c^j \).

First, consider the sub-cases (A) and (B). By pumping up twice this word (that is, \(i = 2 \)) we get the word \(w' = a^{p+\alpha}b^{\beta}c^p \), where either \(\alpha \) or \(\beta \) are equal to \(k+j > 0 \); hence, there is more \(a's \) or \(b's \) than \(c's \). This is a contradiction since the exponent of \(c \) is equal to \(p \).

Now, consider the sub-case (C). By pumping down this word (which means \(i = 0 \)) into \(w' = uwx \) we get that \(w' = a^p b^p c^\alpha \) where \(\alpha = p - (k+j) < p \). Therefore, string \(w' \) cannot belong to the language \(L \). We get a contradiction for this sub-case too.

2. \(v = a^k \) and \(y = b^j \) By pumping up twice this word (that is, \(i = 2 \)) we get the word \(w' = a^{p+\alpha}b^{p+\beta}c^p \), where \(\alpha = p+k \geq p \) and \(\beta = p+j \geq p \). Since \(k+j > 0 \) either \(\alpha > p \) or \(\beta > p \). This is a contradiction since the exponent of \(c \) is exactly \(p \).

3. \(v = b^k \) and \(y = c^j \). If \(j = 0 \) then \(k > 0 \) (since \(|vy| > 0 \)). By pumping up twice we get a word \(w' \) of a form \(a^p b^{p+k}c^p \) which does not belong to \(L \).

If \(j > 0 \) we consider two sub-cases: (A) \(k \leq j \) and (B) \(k > j \). If \(k \leq j \), then by pumping down \((i = 0) \) \(w \) onto \(w' = uwx \) we get that \(w' = a^p b^{p-k}c^{p-j} \notin L \) since \(p-j \leq p-k \). If \(k > j \), then by pumping up \((i = 2) \) we get \(w' = a^p b^{p+k}c^{p+j} \notin L \) since \(p+k > p+j \). Both of them are contradictions.

4. Either \(v \) and \(y \) contains two different symbols, that is, one of the following sub-cases hold: (A) \(v = a^k \) and \(y = a^j b^l \), or (B) \(v = a^j b^l \) and \(y = b^k \), or (C) \(v = b^k \) and \(y = b^j c^l \), or (D) \(v = b^j c^l \) and \(y = c^k \). First of all, if \(j+l = 0 \) then there must be the case that \(k > 0 \) because the condition \(|vy| = k+j+l > 0 \). If that happens, we can get a contradiction for (A),(B) and (C) by pumping up twice, and for (D) by pumping down once. Now, if \(j+l > 0 \) but \(j = 0 \) then sub-cases (A),(B),(C) and (D) boil down to the case 2 and 3 shown above, and therefore they lead into a contradiction.

If \(j,l > 0 \) then by pumping up this word (say \(i = 2 \)) into \(w' = uv^2xy^2z \) we get symbols out of order in every case. This implies that string \(w' \) cannot belong to language \(L \). We get a contradiction for this case.

Since for any possible partition of \(w \) into \(wxyz \) we obtain a contradiction, we have that \(L \) is not context free.