Quake 2 Network Analysis and Performance

Authors:

Fernand Braganza

Praveen Pamidi

Date: 

March 22, 2000

Introduction


The popularity of networked multi-player computer gaming has led to an increased concern in the amount of network traffic. First-person shooting games posses a high degree of quality in terms of sound and graphics. This increase in quality requires a more efficient and reliable method of data transfer. This leads us to our analysis of Quake2, a multiplayer 3D game. In this paper, we describe Quake2’s basic client-server communication and at the same time determine the efficiency of this model. 

Related Work

Our goal in this project is to continue the analysis and the measurement of Quake2’s network usage, which was first introduced by Steven Brown, a fellow UCSD computer science undergraduate. Steve was able to analyze Quake2’s networking protocol through the use of three tools he developed: testproxy, q2analysis, and  driftcheck. 

The first tool, testproxy, is basically a way to decode Quake2’s protocol by taking a local port number as the fake server’s port and the remote IP and port of the real server. Once a Quake2 client connects to the proxy, it will start relaying packets to the server and also decoding the contents and displaying them. According to Steve, this tool proved quite useful for more than just decoding packets; it cold also simulate the loss of certain types of packets in order to see how Quake2 clients and servers would respond. 

The second tool, q2analysis, can be run on live network using CoralReef network analysis system, as well as on prerecorded network traces in pcap format, which can be produced with the tcpdump command. The arguments it takes are the port number to look for the Quake2 servers on, this is usually ‘27910’, and the trace file to use as well as any CoralReef arguments.  The tool will try to identify any active Quake2 connections and record statistics about them.  The statistics currently collected are the address, creation time (or noticed time), last activity time, run time, delay (time while no data was being transmitted for a period of over two seconds), packets sent, packet bytes sent, reliable packets sent, reliable packet bytes sent, and number of reliable packets acknowledged.  These statistics are saved for both the client-to-server connection as well as each server-to-client connection.  It is important to note that to be logged, q2analysis must see a connected packet going from a server to client.  This is to protect against marking clients connecting to the wrong address as a client/server relationship as well as avoiding marking connectionless queries such as queries for the number of players on a server as client/server relationships.   We used this tool to analyze a trace of packets from a Quake2 multiplayer session.  

The third tool which we were not able to use is driftcheck, which measures clock drift – a traditional problem in research computing.  For example, when running q2analysis, Steve setup two network hardware monitoring cards each with their own clock.  When the trace started, he reset the clocks to zero but there was still a 300 ms difference.  These timing differences prevent more complex analysis such as calculating the round-trip time of reliable packets.  

In general, Steve’s work and analysis on the Quake2 network usage laid an excellent foundation from which were able to build upon and add to.  In essence, Steve’s work served as a foundation and set the framework for our project as well.  

Quake2 Network Protocol


One of our main goals in this paper is to analyze the methods of how Quake2 transmits its data from the client to the server. Quake2 is basically a fast paced action game that requires the lowest amount of latency possible. In order to handle this, Quake2, as well as other multiplayer games, have to use a method of communication where it can handle the loss of packets to compensate for latency. Using the UDP protocol helps achieve this goal because UDP accepts loss and out of delivery packets. Unlike TCP, UDP is an unreliable, connectionless datagram protocol which also has less overhead. So in packet transmission, for example, the acceptance of loss can be justified because there would always be another client position update. If TCP was used, it would not be as beneficial because TCP would require frequent updates from the server if it lost packets. Basically, it would simply slow the game because it will suspend and wait for the retransmitted packets to be received, resulting old and therefore useless data. 

Quake2 Ports


On the server side, Quake2 sets a port for all the incoming clients, which is generally port ‘27910’. On the client side, the port is chosen at random. We can see this through the use of tcpdump and testproxy where we will see a more detailed view of the ports used, as well as the data being transmitted.

Decoding the Protocols with  Testproxy


Using the tool testproxy, (Brown, p1) we were able to decode and analyze in detail Quake2’s protocol. To get testproxy to run correctly, we installed it on the machine which was running the Quake2 client. The first step was to start testproxy with the following commands: 

testproxy <local port number> <server ip address> <server port number>

With testproxy running in the background, we then start the Quake2 client in another window and connect to the Quake2 server. From here, we go into the console of Quake2 and type: “connect localhost:<local port number>.” This establishes the connection where the client will start relaying the packets to the server and also decoding and displaying the packets. Here is a partial view of the output where it first initializes and establishes connection:

Our test environment: ethernet local area network with 10mb hub and 10mb NIC cards.

Client: running Linux with testproxy and Quake2

Server: running Win98 with Quake2 on server mode

output from testproxy:

--- Client to server packet:

FF FF FF FF 67 65 74 63 68 61 6C 6C 65 6E 67 65 0A 

....getchallenge.

--- Server to client packet:

FF FF FF FF 63 68 61 6C 6C 65 6E 67 65 20 32 38 33 31 35 

....challenge 28315

--- Client to server packet:

FF FF FF FF 63 6F 6E 6E 65 63 74 20 33 34 20 35 30 33 20 32 

38 33 31 35 20 22 5C 73 70 65 63 74 61 74 6F 72 5C 30 5C 72 

61 74 65 5C 32 35 30 30 30 5C 6D 73 67 5C 31 5C 66 6F 76 5C 

39 30 5C 67 65 6E 64 65 72 5C 6D 61 6C 65 5C 73 6B 69 6E 5C 

6D 61 6C 65 2F 67 72 75 6E 74 5C 6E 61 6D 65 5C 50 6C 61 79 

65 72 5C 68 61 6E 64 5C 30 22 0A 

....connect 34 503 2

8315 "\spectator\0\r

ate\25000\msg\1\fov\

90\gender\male\skin\

male/grunt\name\Play

er\hand\0".

--- Server to client packet:

FF FF FF FF 63 6C 69 65 6E 74 5F 63 6F 6E 6E 65 63 74 

....client_connect

--- Server to client packet:

01 00 00 00 00 00 00 00 

........

--- Client to server packet:

01 00 00 80 01 00 00 00 F7 01 04 6E 65 77 00 

...........new.

--- Server to client packet:

02 00 00 80 01 00 00 80 0C 22 00 00 00 1F 5B 00 00 00 00 01 

00 4F 75 74 65 72 20 42 61 73 65 00 0B 63 6D 64 20 63 6F 6E 

66 69 67 73 74 72 69 6E 67 73 20 32 33 33 32 37 20 30 0A 00 

...

This output consists of the packets being transmitted from client to server and server to client. It decodes the packet in hex and ASCII form. From this output, we can see the methods for establishing a connection. There are two modes of a Quake2 network session: connected to a client and unconnected. The unconnected packets begin with the sequence OxFFFFFFFF and a text message. The initial starting connections consist of several interesting responses. It starts by requesting a “getchallenge” from the client to the server. Notice that the server sends a message back to the client with “challenge 28315.” Then the client responds back to the server with “connect 34 503 2.” According to Steve, these series of numbers are a form of security against spoofed IP addresses. The client has to send back a special number sent by the server to the client’s reported address to prove that the address is correct.

Once a network session is established, some packets must be guaranteed reliable such as player chat or other commands. Below is an example of a player chat:

output from testproxy
--- Client to server packet:

BA 03 00 80 EC 00 00 00 F7 01 04 73 61 79 20 22 74 65 73 74 

22 00 02 35 D0 2E 00 00 02 62 94 10 20 00 10 20 40 80 11 20 

...........say "test << Player Chat
"..5.....b.. .. @.. 

--- Client to server packet:

BB 03 00 00 EC 00 00 00 F7 01 02 2D D0 2E 00 00 02 62 94 10 

20 40 80 11 20 00 10 20 

...........-.....b..

 @.. .. 

--- Server to client packet:

ED 00 00 80 BB 03 00 80 0A 03 50 6C 61 79 65 72 3A 20 74 65 

73 74 0A 00 14 D1 2E 00 00 D0 2E 00 00 00 01 04 11 00 10 24 

00 00 00 00 12 90 80 80 01 02 10 D0 D8 31 29 41 FF 80 01 21 

01 80 01 22 01 00 00 

..........Player: te << Server Response
st.................$

.............1)A...!

..."...

In these series of packets, the client types the message text “test” on their Quake2 client to be broadcasted to all other clients in the game. This is done by sending “test” to the server and it responds to everyone with the “Player: test” message. The interesting part about these packets is that the text has to be guaranteed reliable. To see how they guarantee this to be reliable, we can look at the two 32 bit sequence numbers of the client or server bound packet. The first sequence number is the sender’s sequence number and the second sequence is the highest sequence number received from the receiver. When the receiver sees a packet come in with the top bit set in the sender’s sequence, it toggles its acknowledgment  bit, the top bit of the last seen sequence, and sends a packet to the client. If the first acknowledging packet is lost in the network, the next packet coming in can also acknowledge the reliable transmission (Brown, p2).

Using q2analysis to Analyze Traffic Based on Quake2 Protocols


To get a better understanding of how Quake2 protocols perform under a controlled and measured environment, we used a tool called q2analysis. This allows us to measure the efficiency of the network session. In particular, we can measure how much of Quake2’s traffic is lost by the network instead of getting to the client it was intended for. By default, Quake2 transmits data at a static rate which is much higher than what a client could possible handle if they are on a modem connection. The question is how much packet is lost when the modem client is flooded with packets from the Quake2 server, which results in a significant load on a network for no increased performance on the client side. (Brown, p2).


To get data for q2analysis, we first needed to create a trace file of a Quake2 multiplayer session. The environment consisted of two clients and a server. To record the trace file, tcpdump was running on a separate PC. Tcpdump was executed with the following command: 

tcpdump –lenx –s 1518 –w output.dat

This generates a binary file containing the trace from the multiplayer session. We played for roughly an hour and generated a trace file that is around 14.7MB. We then used this trace file for our q2analysis input:

q2analysis <server port number>  <trace file>

The server port number is by default ‘27910.’ Q2analysis identifies any active Quake2 connection and record statistics about them. Here is the output of q2analysis:

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 415 their sequence 203

# Incoming to quake client: Packet from 192.168.0.5:27910 to 192.168.0.2:27901 sequence 204 their sequence 415(R)

Acknowledging unknown reliable.

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 416 their sequence 204

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 417 their sequence 204

# Incoming to quake client: Packet from 192.168.0.5:27910 to 192.168.0.2:27901 sequence 205 their sequence 417(R)

# Incoming to quake client: Packet from 192.168.0.1:27910 to 192.168.0.2:27901 sequence 17 their sequence 14

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 418 their sequence 205

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 419 their sequence 205

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.1:27910 sequence 15(R) their sequence 15

Now expecting reliable 15

# Incoming to quake client: Packet from 192.168.0.5:27910 to 192.168.0.2:27901 sequence 206(R) their sequence 419(R)

Now expecting reliable 206

# Incoming to quake client: Packet from 192.168.0.1:27910 to 192.168.0.2:27901 sequence 18(R) their sequence 15(R)

Acknowledged reliable 15

Now expecting reliable 18

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.1:27910 sequence 16 their sequence 18(R)

Acknowledged reliable 18

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 420 their sequence 206(R)

Acknowledged reliable 206

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.1:27910 sequence 17 their sequence 18(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 421 their sequence 206(R)

# Incoming to quake client: Packet from 192.168.0.5:27910 to 192.168.0.2:27901 sequence 207 their sequence 421(R)

# Incoming to quake client: Packet from 192.168.0.1:27910 to 192.168.0.2:27901 sequence 19 their sequence 17(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.1:27910 sequence 18 their sequence 19(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 422 their sequence 207(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.1:27910 sequence 19 their sequence 19(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 423 their sequence 207(R)

# Incoming to quake client: Packet from 192.168.0.5:27910 to 192.168.0.2:27901 sequence 208 their sequence 423(R)

# Incoming to quake client: Packet from 192.168.0.1:27910 to 192.168.0.2:27901 sequence 20 their sequence 19(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.1:27910 sequence 20 their sequence 20(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 424 their sequence 208(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.1:27910 sequence 21 their sequence 20(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.5:27910 sequence 425 their sequence 208(R)

# Incoming to quake server: Packet from 192.168.0.2:27901 to 192.168.0.1:27910 sequence 22 their sequence 2

The server has an IP address of 192.168.0.2.  The clients have an IP address of 192.168.0.1 and 192.168.0.5.  As you can see from the data above, the packets arrive in sequences.  


To measure how much Quake2 data is being lost in the network, we would use the fields:  “packet bytes sent,” “reliable packet bytes sent,” “reliable packets sent” and “number of reliable packets acknowledged” (Brown, p2).  According to Steve, if q2analysis saw that a client sent 1000 bytes and 100 of these were reliable, then we can say that 10% of traffic is reliable.  If then q2analysis reported 10 reliable packets of which only 8 were acknowledged, we can say that we have a loss rate of reliable packets of 20%.   

The data above, however, only represents a portion of the total output that was to be expected from q2analysis.  This is due to the fact that the necessary data needed for the analysis was missing.  Repeated attempts to successfully modify the source code were made however we were still not able to get a complete output.  Only a few outputs were not able to be displayed and these include the packet bytes sent and the reliable packet bytes sent.  Since we could not get q2analysis to function completely, we were not able to reach our desired goal.  

Conclusion

In this paper, we described Quake2’s basic client-server communication and at the same time attempted to determine the efficiency of this model. Our goal in this project was to continue the analysis and the measurement of Quake2’s network usage based upon prior work that had been done by Steven Brown.  Through the use of testproxy, we were able to decode and learn how Quake2 protocols work.  Through the use of q2analysis, we were able to gather data and learn about the sequences of transfers associated with Quake2 packets.  Our approach was to first learn how Quake2 multiplayer works in terms of the client/server model.  Once we had a grasp on this fundamental concept, we began to take full advantage of the tools provided to us. With these tools, we started to analyze each one of the Quake2 protocols more in depth.  

Along our research process, we began to run into obstacles.  The first obstacle arose when trying to get the tools to work in our local environment.  This was due to the fact that the source required extra libraries that we needed to install.  At the same time, our inexperience with LINUX further added to our delays.  Another obstacle we encountered dealt with the output.  When we were finally able to compile and run the tools, we were disappointed to see that a portion of the output did not show up as expected.  But these obstacles only made the experience more worthwhile and we were able to learn a lot of things.  We became more familiar with installing and compiling programs in UNIX. We learned how to use tcpdump, which is a common tool to analyze network packets. It also gave us the opportunity to work effectively as a team even though we had very busy schedules. We feel that the basic purpose of our research was most importantly, to learn, and without a doubt, we both learned a great deal about our topic and even though we were not fully able to achieve our desired goals that we had mentioned, we still feel we accomplished a great deal.

References:

http://www.caida.org/~swbrown (Steven Brown)

