Midterm Exam 2, Mar 10, 2000
CSE 105 – Winter ’00

Problem 0 (1 point): PRINT your name: DANIELE MICCIANCIO

Problem 1 (33 point): Let L be the language over the alphabet $\Sigma = \{a,b\}$ of all strings $w \in \Sigma^*$ such that w contains an equal number of a’s and b’s. Give the formal description of a Turing Machine accepting L.

Solution: The language L is decided by the Turing Machine

$$M = (Q, \Sigma, \Gamma, \delta, \text{start}, \text{accept}, \text{reject})$$

defined as follows: the set of states is $Q = \{\text{start}, 1, 2, 3, \text{accept}, \text{reject}\}$, the input alphabet is $\Sigma = \{a,b\}$, the tape alphabet is $\Gamma = \{a, b, \$, x\}$, and the transition function δ is defined by the following state diagram:

![State Diagram](image)

Figure 1: State diagram
Problem 2 (33 point): Let L be a language over some alphabet Σ, and let $L' = \{w\#w | w \in L\}$ be the language of all words over $\Sigma \cup \{\#\}$ obtained repeating any word from L twice (with a $\#$ sign in between the two copies). Prove that if L is decidable, then also L' is decidable.

Solution: Let M be a TM that decides L. (Such a TM exists by definition of decidable language.) Then the following TM decides L':

On input x:

1. First check that the input string has the right form $x = w\#w$. This can be done using the TM M_1 from section 3.1 in the book (also described in class).
2. Erase the second copy of the string, overwriting all symbols from the $\#$ and after with blanks.
3. At this point the tape contains the string w. Run M on w to decide if $w \in L$. If M accepts, then accept, and if M rejects then reject.

Another possible solution to this problem based on the closure properties of decidable languages is the following: Since L is decidable, then also $L_1 = L \cdot \{\#\}$ is decidable (where \cdot is the concatenation operation). Moreover as proved in class (or section 3.1 in the book) the language $L_2 = \{w\# | w \in \Sigma^*\}$ is decidable. Using the closure of decidable languages under intersection we get that $L' = L_1 \cap L_2$ is decidable.

Problem 3 (33 point): Let L be the following language

$L = \{(G, E) \mid G$ is a CFG and E is a regular expression such that $L(G) \subseteq L(E)\}$.

Prove that L is decidable.

Solution: We describe a TM that decide the language L. The idea is the following. We first notice that $L(G) \subseteq L(E)$ is equivalent to $L(G) \subseteq L(E) = \emptyset$. Then we recall that since the complement of a regular language is regular, and the intersection of a context free language with a regular language is context free, then $L = L(G) \cap \overline{L(E)}$ is also context free. Moreover, a context free grammar generating the language L can be computed from the original CFG G and regular expression E. Once we compute a CFG G' for L, we can check whether $L = \emptyset$ using the decider for E_{CFG}. Details follow:

On input (G, E):

1. First check that G is a valid description of a grammar, and E is a valid description of a regular expression.
2. Compute a CFG G' generating the language $L = L(G) \cap \overline{L(E)}$ using the procedures from the book.
3. Run the decider R studied in class (or from Theorem 4.7 in the book) on input G' to decide if $G' \in E_{CFG}$. If R accepts then accept, and if R reject then reject.