Problem 0 (1 point): PRINT your name _____________________________

Problem 1 (33 points): Let \(L_1 \) and \(L_2 \) be two languages over the alphabet \(\Sigma \). The shuffle of \(L_1 \) and \(L_2 \) is the set of all words that can be obtained shuffling a word \(w_1 \) from \(L_1 \) and a word \(w_2 \) from \(L_2 \), i.e., breaking each word into pieces \(w_1 = u_1 u_2 \ldots u_n \) and \(w_2 = v_1 v_2 \ldots v_n \) \((n \geq 1)\) and forming the word \(u_1 v_1 u_2 v_2 \ldots u_n v_n \). (Notice: the pieces \(u_i \) and \(v_i \) can be arbitrary words in \(\Sigma^* \), not just single characters. There is more than one way to break up a word into pieces. In the shuffle you have to consider all of them.)

For example if \(L_1 = \{aac\} \) and \(L_2 = \{dc,b\} \), then
\[
L_1 \| L_2 = \{aacde, aadce, aadec, adace, adaec, adace, daace, dace, aecac, aedac, acea, baac\}
\]

Prove that if \(L_1 \) and \(L_2 \) are regular languages, then also \(L_1 \| L_2 \) is regular.
[HINT: given DFAs \(M_1 = (Q_1, s_1, F_1, \Sigma, \delta_1) \) and \(M_2 = (Q_2, s_2, F_2, \Sigma, \delta_2) \) recognizing the languages \(L_1 \) and \(L_2 \), show how to build an NFA \(M = (Q, s, F, \Sigma, \delta) \) with states \(Q = Q_1 \times Q_2 \) that recognizes \(L_1 \| L_2 \)].

Problem 2 (33 points): A palindrome is a word that reads the same forward and backward. For example \(abacaba \) and \(ababbbaba \) are palindromes, but \(abab \) is not. Prove that the language \(L \) of all words over \(\Sigma = \{a, b\} \) that are not a palindrome is not regular.

Solution: Proof by contradiction. Assume \(L \) is regular. Then, by problem 4 in homework assignment 2, also the complement of \(L \) (\(\bar{L} \)) is regular. Notice that \(\bar{L} \) is the set of words that are palindromes. We now prove that \(\bar{L} \) is not regular using the pumpin lemma. Let \(n \) be the pumping length associated to language \(\bar{L} \) and consider the word \(w = a^n b a^n \). Notice that \(w \) is a palindrome, i.e., \(w \in \bar{L} \). Since \(w \) is longer than \(n \), we know from the pumping lemma that there exists strings \(x, y, z \) such that \(w = xyz \), \(xy < n \), \(y \neq \epsilon \) and \(\delta((q_1, q_2), a) \) for all \(a \neq \epsilon \), and \(\delta((q_1, q_2), \epsilon) = \emptyset \).
Problem 3 (33 points): In this problem you will prove that the language of all words that are not palindromes is context free. Let P be the language of all palindromes over the alphabet $\Sigma = \{a,b\}$. Answer the following questions. (Part (b) and (c) are independent. You can solve them in any order.)

(a) Give a context free grammar that generates P.

Solution: The language P is generated by the following grammar:

$$P \rightarrow \epsilon | aP | bP$$

(b) Convert the context free grammar from part (a) into an equivalent push down automaton.

Solution: The state diagram of the PDA corresponding to the grammar is

(c) Prove that the complement of P (i.e., the set of all words that are not palindromes) is also context free by giving a CFG that generates $\Sigma^* - P$.

Solution: A possible solution is the following:

$$S \rightarrow aSa|bSb|aP|bPa$$

$$P \rightarrow \epsilon | aP | bP$$

where P generates the set of palindromes as defined in part (a). An alternative solution is given by the grammar:

$$S \rightarrow aSa|bSb|aTa|bTa$$

$$T \rightarrow \epsilon | aT | bT$$

where T generates the set of all strings.